Loading…

Screening of Single-Stranded DNA Aptamer Specific for Florfenicol and Application in Detection of Food Safety

In this work, the single-stranded DNA (ssDNA) aptamers specific to florfenicol (FF) and having a high binding affinity were prepared using the magnetic bead-based systematic evolution of ligands by the exponential enrichment technique (MB-SELEX). After 10 rounds of the MB-SELEX screening, aptamers t...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2022-09, Vol.12 (9), p.701
Main Authors: Shi, Minghui, Liu, Ruobing, Zhang, Fuyuan, Chitrakar, Bimal, Wang, Xianghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the single-stranded DNA (ssDNA) aptamers specific to florfenicol (FF) and having a high binding affinity were prepared using the magnetic bead-based systematic evolution of ligands by the exponential enrichment technique (MB-SELEX). After 10 rounds of the MB-SELEX screening, aptamers that can simultaneously recognize FF and its metabolite florfenicol amine (FFA) were obtained. The aptamer with the lowest dissociation constant (Kd) was truncated and optimized based on a secondary structure analysis. The optimal aptamer selected was Apt-14t, with a length of 43 nt, and its dissociation constant was 4.66 ± 0.75 nM, which was about 7 times higher than that of the full-length sequence. The potential binding sites and interactions with FF were demonstrated by molecular docking simulations. In addition, a colorimetric strategy for nanogold aptamers was constructed. The linear detection range of this method was 0.00128–500 ng/mL and the actual detection limit was 0.00128 ng/mL. Using this strategy to detect florfenicol in actual milk and eggs samples, the spiked recoveries were 88.9–123.1% and 84.0–112.2%, respectively, and the relative standard deviation was less than 5.6%, showing high accuracy.
ISSN:2079-6374
2079-6374
DOI:10.3390/bios12090701