Loading…
Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE
Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, ac...
Saved in:
Published in: | International journal of ceramic engineering & science 2022-03, Vol.4 (2), p.112-118 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3 |
container_end_page | 118 |
container_issue | 2 |
container_start_page | 112 |
container_title | International journal of ceramic engineering & science |
container_volume | 4 |
creator | Stein, Alena Sax, Almuth Quirmbach, Peter |
description | Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup. |
doi_str_mv | 10.1002/ces2.10117 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25</doaj_id><sourcerecordid>2641744242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</originalsourceid><addsrcrecordid>eNp9kV9PwyAUxRujicv0xU9A4pvJlD-ltL6ZOXXJkj2oz-QW6GR2ZUKr1k8vW43xyScu3B_ncDlJckbwJcGYXikTaKwIEQfJiHKRTxgV-PBPfZychrDGESaCYMZGyevcuwbVBtSLbVao8m6DGtd4U3lQrfM9WnnQBpXQfdrWXKN5o-271R3UaOtdtAzIbVu7sV_Q2igFjY4No63ab8sedWGnfLucnSRHFdTBnP6s4-T5bvY0fZgslvfz6c1iopigYkIwz1Ndakx0qpSpcEFzXokCs0qwIlNUZHlWcmZ0lgtgvAJc0kKXkBel0UXJxsl80NUO1nLr7QZ8Lx1YuT9wfiXBt1bVRnJWpaAxx5BFT8qBq1zQ1HAhMgOUR63zQSsO-9aZ0Mq163wTny9plhKRpjSlkboYKOVdCPHzfl0Jlrts5C4buc8mwmSAP2xt-n9IOZ090uHON-S5kIk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641744242</pqid></control><display><type>article</type><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><source>Access via ProQuest (Open Access)</source><source>Wiley Online Library Open Access</source><creator>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</creator><creatorcontrib>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</creatorcontrib><description>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</description><identifier>ISSN: 2578-3270</identifier><identifier>EISSN: 2578-3270</identifier><identifier>DOI: 10.1002/ces2.10117</identifier><language>eng</language><publisher>Westerville: John Wiley & Sons, Inc</publisher><subject>Acid leaching ; Bauxite ; Bayer process ; Design of experiments ; Grain size ; Hydrochloric acid ; impurities ; Influence ; Iron ; iron/iron compounds ; modeling/model ; Optimization ; Process parameters ; Raw materials ; Refractories ; Statistical methods</subject><ispartof>International journal of ceramic engineering & science, 2022-03, Vol.4 (2), p.112-118</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC. on behalf of the American Ceramic Society</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</citedby><cites>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2641744242/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2641744242?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Stein, Alena</creatorcontrib><creatorcontrib>Sax, Almuth</creatorcontrib><creatorcontrib>Quirmbach, Peter</creatorcontrib><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><title>International journal of ceramic engineering & science</title><description>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</description><subject>Acid leaching</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Design of experiments</subject><subject>Grain size</subject><subject>Hydrochloric acid</subject><subject>impurities</subject><subject>Influence</subject><subject>Iron</subject><subject>iron/iron compounds</subject><subject>modeling/model</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Raw materials</subject><subject>Refractories</subject><subject>Statistical methods</subject><issn>2578-3270</issn><issn>2578-3270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV9PwyAUxRujicv0xU9A4pvJlD-ltL6ZOXXJkj2oz-QW6GR2ZUKr1k8vW43xyScu3B_ncDlJckbwJcGYXikTaKwIEQfJiHKRTxgV-PBPfZychrDGESaCYMZGyevcuwbVBtSLbVao8m6DGtd4U3lQrfM9WnnQBpXQfdrWXKN5o-271R3UaOtdtAzIbVu7sV_Q2igFjY4No63ab8sedWGnfLucnSRHFdTBnP6s4-T5bvY0fZgslvfz6c1iopigYkIwz1Ndakx0qpSpcEFzXokCs0qwIlNUZHlWcmZ0lgtgvAJc0kKXkBel0UXJxsl80NUO1nLr7QZ8Lx1YuT9wfiXBt1bVRnJWpaAxx5BFT8qBq1zQ1HAhMgOUR63zQSsO-9aZ0Mq163wTny9plhKRpjSlkboYKOVdCPHzfl0Jlrts5C4buc8mwmSAP2xt-n9IOZ090uHON-S5kIk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Stein, Alena</creator><creator>Sax, Almuth</creator><creator>Quirmbach, Peter</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>202203</creationdate><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><author>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid leaching</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Design of experiments</topic><topic>Grain size</topic><topic>Hydrochloric acid</topic><topic>impurities</topic><topic>Influence</topic><topic>Iron</topic><topic>iron/iron compounds</topic><topic>modeling/model</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Raw materials</topic><topic>Refractories</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Alena</creatorcontrib><creatorcontrib>Sax, Almuth</creatorcontrib><creatorcontrib>Quirmbach, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of ceramic engineering & science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Alena</au><au>Sax, Almuth</au><au>Quirmbach, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</atitle><jtitle>International journal of ceramic engineering & science</jtitle><date>2022-03</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>112</spage><epage>118</epage><pages>112-118</pages><issn>2578-3270</issn><eissn>2578-3270</eissn><abstract>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</abstract><cop>Westerville</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ces2.10117</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2578-3270 |
ispartof | International journal of ceramic engineering & science, 2022-03, Vol.4 (2), p.112-118 |
issn | 2578-3270 2578-3270 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25 |
source | Access via ProQuest (Open Access); Wiley Online Library Open Access |
subjects | Acid leaching Bauxite Bayer process Design of experiments Grain size Hydrochloric acid impurities Influence Iron iron/iron compounds modeling/model Optimization Process parameters Raw materials Refractories Statistical methods |
title | Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20leaching%20from%20nonrefractory%20grade%20bauxite:%20Individual%20process%20optimization%20and%20prediction%20by%20using%20DOE&rft.jtitle=International%20journal%20of%20ceramic%20engineering%20&%20science&rft.au=Stein,%20Alena&rft.date=2022-03&rft.volume=4&rft.issue=2&rft.spage=112&rft.epage=118&rft.pages=112-118&rft.issn=2578-3270&rft.eissn=2578-3270&rft_id=info:doi/10.1002/ces2.10117&rft_dat=%3Cproquest_doaj_%3E2641744242%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641744242&rft_id=info:pmid/&rfr_iscdi=true |