Loading…

Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE

Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, ac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of ceramic engineering & science 2022-03, Vol.4 (2), p.112-118
Main Authors: Stein, Alena, Sax, Almuth, Quirmbach, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3
cites cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3
container_end_page 118
container_issue 2
container_start_page 112
container_title International journal of ceramic engineering & science
container_volume 4
creator Stein, Alena
Sax, Almuth
Quirmbach, Peter
description Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.
doi_str_mv 10.1002/ces2.10117
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25</doaj_id><sourcerecordid>2641744242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</originalsourceid><addsrcrecordid>eNp9kV9PwyAUxRujicv0xU9A4pvJlD-ltL6ZOXXJkj2oz-QW6GR2ZUKr1k8vW43xyScu3B_ncDlJckbwJcGYXikTaKwIEQfJiHKRTxgV-PBPfZychrDGESaCYMZGyevcuwbVBtSLbVao8m6DGtd4U3lQrfM9WnnQBpXQfdrWXKN5o-271R3UaOtdtAzIbVu7sV_Q2igFjY4No63ab8sedWGnfLucnSRHFdTBnP6s4-T5bvY0fZgslvfz6c1iopigYkIwz1Ndakx0qpSpcEFzXokCs0qwIlNUZHlWcmZ0lgtgvAJc0kKXkBel0UXJxsl80NUO1nLr7QZ8Lx1YuT9wfiXBt1bVRnJWpaAxx5BFT8qBq1zQ1HAhMgOUR63zQSsO-9aZ0Mq163wTny9plhKRpjSlkboYKOVdCPHzfl0Jlrts5C4buc8mwmSAP2xt-n9IOZ090uHON-S5kIk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641744242</pqid></control><display><type>article</type><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><source>Access via ProQuest (Open Access)</source><source>Wiley Online Library Open Access</source><creator>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</creator><creatorcontrib>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</creatorcontrib><description>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</description><identifier>ISSN: 2578-3270</identifier><identifier>EISSN: 2578-3270</identifier><identifier>DOI: 10.1002/ces2.10117</identifier><language>eng</language><publisher>Westerville: John Wiley &amp; Sons, Inc</publisher><subject>Acid leaching ; Bauxite ; Bayer process ; Design of experiments ; Grain size ; Hydrochloric acid ; impurities ; Influence ; Iron ; iron/iron compounds ; modeling/model ; Optimization ; Process parameters ; Raw materials ; Refractories ; Statistical methods</subject><ispartof>International journal of ceramic engineering &amp; science, 2022-03, Vol.4 (2), p.112-118</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC. on behalf of the American Ceramic Society</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</citedby><cites>FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2641744242/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2641744242?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Stein, Alena</creatorcontrib><creatorcontrib>Sax, Almuth</creatorcontrib><creatorcontrib>Quirmbach, Peter</creatorcontrib><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><title>International journal of ceramic engineering &amp; science</title><description>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</description><subject>Acid leaching</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Design of experiments</subject><subject>Grain size</subject><subject>Hydrochloric acid</subject><subject>impurities</subject><subject>Influence</subject><subject>Iron</subject><subject>iron/iron compounds</subject><subject>modeling/model</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Raw materials</subject><subject>Refractories</subject><subject>Statistical methods</subject><issn>2578-3270</issn><issn>2578-3270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV9PwyAUxRujicv0xU9A4pvJlD-ltL6ZOXXJkj2oz-QW6GR2ZUKr1k8vW43xyScu3B_ncDlJckbwJcGYXikTaKwIEQfJiHKRTxgV-PBPfZychrDGESaCYMZGyevcuwbVBtSLbVao8m6DGtd4U3lQrfM9WnnQBpXQfdrWXKN5o-271R3UaOtdtAzIbVu7sV_Q2igFjY4No63ab8sedWGnfLucnSRHFdTBnP6s4-T5bvY0fZgslvfz6c1iopigYkIwz1Ndakx0qpSpcEFzXokCs0qwIlNUZHlWcmZ0lgtgvAJc0kKXkBel0UXJxsl80NUO1nLr7QZ8Lx1YuT9wfiXBt1bVRnJWpaAxx5BFT8qBq1zQ1HAhMgOUR63zQSsO-9aZ0Mq163wTny9plhKRpjSlkboYKOVdCPHzfl0Jlrts5C4buc8mwmSAP2xt-n9IOZ090uHON-S5kIk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Stein, Alena</creator><creator>Sax, Almuth</creator><creator>Quirmbach, Peter</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>202203</creationdate><title>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</title><author>Stein, Alena ; Sax, Almuth ; Quirmbach, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid leaching</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Design of experiments</topic><topic>Grain size</topic><topic>Hydrochloric acid</topic><topic>impurities</topic><topic>Influence</topic><topic>Iron</topic><topic>iron/iron compounds</topic><topic>modeling/model</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Raw materials</topic><topic>Refractories</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Alena</creatorcontrib><creatorcontrib>Sax, Almuth</creatorcontrib><creatorcontrib>Quirmbach, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of ceramic engineering &amp; science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Alena</au><au>Sax, Almuth</au><au>Quirmbach, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE</atitle><jtitle>International journal of ceramic engineering &amp; science</jtitle><date>2022-03</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>112</spage><epage>118</epage><pages>112-118</pages><issn>2578-3270</issn><eissn>2578-3270</eissn><abstract>Bauxite is an important raw material for the production of refractories. The availability of refractory grade ore worldwide is limited, and high iron contents in particular reduce the quality of the material. For refractory applications, a maximum iron content of 2 % is acceptable. In this study, acid leaching with HCl is used to decrease the iron content in different nonrefractory grade raw bauxites. Computerized design of experiments and statistical methods are used to determine optimum process parameters and influencing factors for different bauxites individually. Compared to previously published studies, the applied approach makes it possible to process even very iron‐rich bauxites (e.g., 31 % Fe2O3 in calcined substance) and to lower their Fe2O3 contents below the permitted 2 %. In addition, larger grain sizes (around 5.5 mm) can be used. Statistical planning and mathematical modeling also allow the prediction of the minimum achievable iron content within the investigated parameter ranges. For selected parameter combinations, the achievable Fe2O3 content can be predicted relatively accurately without the requirement for practical testing of the corresponding experimental setup.</abstract><cop>Westerville</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ces2.10117</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2578-3270
ispartof International journal of ceramic engineering & science, 2022-03, Vol.4 (2), p.112-118
issn 2578-3270
2578-3270
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_53f4ad050a684d25a5c8724e5776ea25
source Access via ProQuest (Open Access); Wiley Online Library Open Access
subjects Acid leaching
Bauxite
Bayer process
Design of experiments
Grain size
Hydrochloric acid
impurities
Influence
Iron
iron/iron compounds
modeling/model
Optimization
Process parameters
Raw materials
Refractories
Statistical methods
title Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20leaching%20from%20nonrefractory%20grade%20bauxite:%20Individual%20process%20optimization%20and%20prediction%20by%20using%20DOE&rft.jtitle=International%20journal%20of%20ceramic%20engineering%20&%20science&rft.au=Stein,%20Alena&rft.date=2022-03&rft.volume=4&rft.issue=2&rft.spage=112&rft.epage=118&rft.pages=112-118&rft.issn=2578-3270&rft.eissn=2578-3270&rft_id=info:doi/10.1002/ces2.10117&rft_dat=%3Cproquest_doaj_%3E2641744242%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3727-10584dbd01d4ccef09285f7903f7396c27686b53ed687a35fa0b29dba89bed9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641744242&rft_id=info:pmid/&rfr_iscdi=true