Loading…

Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level

In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterin...

Full description

Saved in:
Bibliographic Details
Published in:Genetics selection evolution (Paris) 2018-09, Vol.50 (1), p.46-46, Article 46
Main Authors: Matheson, Stephanie M, Walling, Grant A, Edwards, Sandra A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). IUGR poses life-long challenges, both mental, with morphological brain changes and altered cognition, and physical, such as immaturity of organs, reduced colostrum intake and weight gain. In pigs, head morphology of newborn piglets is a good phenotypic marker for identifying such compromised piglets. Growth retardation could be considered as a property of the dam, in part due to either uterine capacity or insufficiency. A novel approach to this issue is to consider the proportion of IUGR-affected piglets in a litter as an indirect measure of uterine capacity. However, uterine capacity or sufficiency cannot be equated solely to litter size and thus is a trait difficult to measure on farm. A total of 21,159 Landrace × Large White or Landrace × White Duroc piglets (born over 52 weeks) with recorded head morphology and birth weights were followed from birth until death or weaning. At the piglet level, the estimated heritability for IUGR (as defined by head morphology) was low at 0.01 ± 0.01. Piglet direct genetic effects of birth weight (h  = 0.07 ± 0.02) were strongly negatively correlated with head morphology (- 0.93), in that IUGR-affected piglets tended to have lower birth weights. At the sow level, analysis of the proportion of IUGR-affected piglets in a litter gave a heritability of 0.20 ± 0.06, with high and negative genetic correlations of the proportion of IUGR-affected piglets with average offspring birth weight (- 0.90) and with the proportion of piglets surviving until 24 h (- 0.80). This suggests that the proportion of IUGR-affected piglets in a litter is a suitable indirect measure of uterine capacity for inclusion in breeding programmes that aim at reducing IUGR in piglets and improving piglet survival.
ISSN:1297-9686
0999-193X
1297-9686
DOI:10.1186/s12711-018-0417-7