Loading…

Lipopolysaccharide- and Glutamate-Induced Hypothalamic Hydroxyl Radical Elevation and Fever Can Be Suppressed by N-Methyl-D-aspartate-Receptor Antagonists

The purpose of the current study was to explore the effects of N-methyl-D-aspartate (NMDA)-receptor antagonists (MK-801 and LY235959) administered intracerebroventricularly on the changes of both core temperature and hypothalamic levels of 2,3-dihydroxybenzoic acid (2,3-DHBA) induced by intracerebro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Pharmacological Sciences 2007, Vol.104(2), pp.130-136
Main Authors: Kao, Cheng-Hsing, Kao, Ting-Yu, Huang, Wu-Tein, Lin, Mao-Tsun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of the current study was to explore the effects of N-methyl-D-aspartate (NMDA)-receptor antagonists (MK-801 and LY235959) administered intracerebroventricularly on the changes of both core temperature and hypothalamic levels of 2,3-dihydroxybenzoic acid (2,3-DHBA) induced by intracerebroventricular injection of glutamate (100 – 400 µg at 10 µl/rabbit) or intravenous administration of lipopolysaccharide (LPS) (2 µg/kg) in rabbits. The measurements of 2,3-DHBA were used as an index of the intrahypothalamic levels of hydroxyl radicals. The rise in both the core temperature and hypothalamic 2,3-DHBA could be induced by intracerebroventricular injection of glutamate or intravenous administration of LPS. The glutamate- or LPS-induced fever and increased hypothalamic levels of 2,3-DHBA were significantly antagonized by pretreatment with injection of MK-801 or LY235959 1 h before glutamate or LPS injection. The increased levels of prostaglandin E2 in the hypothalamus induced by glutamate or LPS could be suppressed by MK-801 or LY235959. The data demonstrate that prior antagonism of NMDA receptors in the brain, in addition to reducing prostaglandin E2 production in the hypothalamus, suppresses both the glutamate- and LPS-induced fever and increased hypothalamic hydroxyl radicals.
ISSN:1347-8613
1347-8648
DOI:10.1254/jphs.FP0070272