Loading…
Differential Effect of Schisandrin B Stereoisomers on ATR-Mediated DNA Damage Checkpoint Signaling
We have previously reported that schisandrin B (SchB) is a specific inhibitor of ATR (ataxia telangiectasia and Rad-3-related) protein kinase. Since SchB consists of a mixture of its diastereomers gomisin N (GN) and γ-schisandrin (γ-Sch), the inhibitory action of SchB might result from a stereospeci...
Saved in:
Published in: | Journal of Pharmacological Sciences 2013/06/20, Vol.122(2), pp.138-148 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have previously reported that schisandrin B (SchB) is a specific inhibitor of ATR (ataxia telangiectasia and Rad-3-related) protein kinase. Since SchB consists of a mixture of its diastereomers gomisin N (GN) and γ-schisandrin (γ-Sch), the inhibitory action of SchB might result from a stereospecific interaction between one of the stereoisomers of SchB and ATR. Therefore, we investigated the effect of GN and γ-Sch on UV (UVC at 254 nm)-induced activation of DNA damage checkpoint signaling in A549 cells. UV-induced cell death (25 – 75 J/m2) was amplified by the presence of the diastereomers, especially GN. At the same time, GN, but not γ-Sch, inhibited the phosphorylation of checkpoint proteins such as p53, structural maintenance of chromosomes 1, and checkpoint kinase 1 in UV-irradiated cells. Moreover, GN inhibited the G2/M checkpoint during UV-induced DNA damage. The in vitro kinase activity of immunoaffinity-purified ATR was dose-dependently inhibited by GN (IC50: 7.28 μM) but not by γ-Sch. These results indicate that GN is the active component of SchB and suggest that GN inhibits the DNA damage checkpoint signaling by stereospecifically interacting with ATR. |
---|---|
ISSN: | 1347-8613 1347-8648 |
DOI: | 10.1254/jphs.13048FP |