Loading…

Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current

Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model consid...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2021, Vol.2021 (1)
Main Authors: Zhang, Shuguang, Shi, Wenku, Chen, Zhiyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443
cites cdi_FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443
container_end_page
container_issue 1
container_start_page
container_title Shock and vibration
container_volume 2021
creator Zhang, Shuguang
Shi, Wenku
Chen, Zhiyong
description Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.
doi_str_mv 10.1155/2021/6691650
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5400cc65542d41268aab8685a5c584d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814636123</galeid><doaj_id>oai_doaj_org_article_5400cc65542d41268aab8685a5c584d7</doaj_id><sourcerecordid>A814636123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdR8LnzBwy41NG8J11KfRUURXQdbvOoKe2kJlPUf--tIy4li4Sbc76c3FtVx5ScUyrlBSOMXig1okqSrWqP6lY2I0b4Np5JS5qRYmy32i9lTgiRXIm9yj8k5xexm9XQufoJMix973M9cb7rY4gW-pi6OoX64bm-guUK72zqSnQ-b1zXnzb2g2b8hm6L5lj6aMsPcLzOGUGH1U6ARfFHv_tB9Xpz_TK-a-4fbyfjy_vGCsH6Ro-A2sCEUBwwtmx1AEUI-Da0IC3nlCnwQCWzU0mA8cBpq2wIfMr8VAh-UE0GrkswN6scl5C_TIJofgopzwxkDLfwRgpCrFVSCuYEcjXAVCst8R2phWuRdTKwVjm9r33pzTytc4fxDZNU0JYIzVF1PqhmgNDYhdRjE3A5v4zYKB8i1i81xT8pyjaGs8Fgcyol-_AXkxKzmaLZTNH8ThHlp4P8LXYOPuL_6m8I9Zqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514170483</pqid></control><display><type>article</type><title>Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Zhang, Shuguang ; Shi, Wenku ; Chen, Zhiyong</creator><contributor>Boscato, Giosuè ; Giosuè Boscato</contributor><creatorcontrib>Zhang, Shuguang ; Shi, Wenku ; Chen, Zhiyong ; Boscato, Giosuè ; Giosuè Boscato</creatorcontrib><description>Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2021/6691650</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Analysis ; Dampers ; Damping ; Dynamic models ; Excitation ; Hysteresis ; Magnetic fields ; Magnetorheological fluids ; Model testing ; Neural networks ; Nonlinear dynamics ; Nonlinearity ; Parameter identification ; Parameter modification ; Parameter sensitivity ; Sensitivity analysis ; Sensors ; Smart structures ; Velocity ; Vibration</subject><ispartof>Shock and vibration, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Shuguang Zhang et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Shuguang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443</citedby><cites>FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443</cites><orcidid>0000-0002-5925-8538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2514170483/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2514170483?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Boscato, Giosuè</contributor><contributor>Giosuè Boscato</contributor><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><title>Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current</title><title>Shock and vibration</title><description>Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Dampers</subject><subject>Damping</subject><subject>Dynamic models</subject><subject>Excitation</subject><subject>Hysteresis</subject><subject>Magnetic fields</subject><subject>Magnetorheological fluids</subject><subject>Model testing</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>Parameter sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Smart structures</subject><subject>Velocity</subject><subject>Vibration</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdR8LnzBwy41NG8J11KfRUURXQdbvOoKe2kJlPUf--tIy4li4Sbc76c3FtVx5ScUyrlBSOMXig1okqSrWqP6lY2I0b4Np5JS5qRYmy32i9lTgiRXIm9yj8k5xexm9XQufoJMix973M9cb7rY4gW-pi6OoX64bm-guUK72zqSnQ-b1zXnzb2g2b8hm6L5lj6aMsPcLzOGUGH1U6ARfFHv_tB9Xpz_TK-a-4fbyfjy_vGCsH6Ro-A2sCEUBwwtmx1AEUI-Da0IC3nlCnwQCWzU0mA8cBpq2wIfMr8VAh-UE0GrkswN6scl5C_TIJofgopzwxkDLfwRgpCrFVSCuYEcjXAVCst8R2phWuRdTKwVjm9r33pzTytc4fxDZNU0JYIzVF1PqhmgNDYhdRjE3A5v4zYKB8i1i81xT8pyjaGs8Fgcyol-_AXkxKzmaLZTNH8ThHlp4P8LXYOPuL_6m8I9Zqg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Shuguang</creator><creator>Shi, Wenku</creator><creator>Chen, Zhiyong</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5925-8538</orcidid></search><sort><creationdate>2021</creationdate><title>Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current</title><author>Zhang, Shuguang ; Shi, Wenku ; Chen, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Dampers</topic><topic>Damping</topic><topic>Dynamic models</topic><topic>Excitation</topic><topic>Hysteresis</topic><topic>Magnetic fields</topic><topic>Magnetorheological fluids</topic><topic>Model testing</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>Parameter sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Smart structures</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuguang</au><au>Shi, Wenku</au><au>Chen, Zhiyong</au><au>Boscato, Giosuè</au><au>Giosuè Boscato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current</atitle><jtitle>Shock and vibration</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/6691650</doi><orcidid>https://orcid.org/0000-0002-5925-8538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2021, Vol.2021 (1)
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5400cc65542d41268aab8685a5c584d7
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Algorithms
Analysis
Dampers
Damping
Dynamic models
Excitation
Hysteresis
Magnetic fields
Magnetorheological fluids
Model testing
Neural networks
Nonlinear dynamics
Nonlinearity
Parameter identification
Parameter modification
Parameter sensitivity
Sensitivity analysis
Sensors
Smart structures
Velocity
Vibration
title Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Parameter%20Identification%20of%20MR%20Damper%20considering%20Excitation%20Characteristics%20and%20Current&rft.jtitle=Shock%20and%20vibration&rft.au=Zhang,%20Shuguang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2021/6691650&rft_dat=%3Cgale_doaj_%3EA814636123%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-89a1cf24463a203578fa600ae7f7a5c33126aea152cb50a23f3176cff3b2eb443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2514170483&rft_id=info:pmid/&rft_galeid=A814636123&rfr_iscdi=true