Loading…
Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing
This study investigates the characteristics of space-borne Lightning Mapping Imager (LMI) lightning products and their relationships with cloud properties using ground-based total lightning observations from the Beijing Broadband Lightning Network (BLNET) and cloud information from S-band Doppler ra...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021, Vol.13 (9), p.1746 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the characteristics of space-borne Lightning Mapping Imager (LMI) lightning products and their relationships with cloud properties using ground-based total lightning observations from the Beijing Broadband Lightning Network (BLNET) and cloud information from S-band Doppler radar data. LMI showed generally consistent lightning spatial distributions with those of BLNET, and yielded a considerable lightning detection capability over regions with complex terrain. The ratios between the LMI events, groups and flashes were approximately 9:3:1, and the number of LMI-detected flashes was roughly one order of magnitude smaller than the number of BLNET-detected flashes. However, in different convective episodes, the LMI detection capability was likely to be affected by cloud properties, especially in strongly electrified convective episodes associated with frequent lightning discharging and thick cloud depth. As a result, LMI tended to detect lightning flashes located in weaker and shallower cloud portions associated with fewer cloud shielding effects. With reference to the BLNET total lightning data as the ground truth of observation (both intra-cloud lightning and cloud-to-ground lightning flashes), the LMI event-based detection efficiency (DE) was estimated to reach 28% under rational spatiotemporal matching criteria (1.5 s and 65 km) over Beijing. In terms of LMI flash-based DE, it was much reduced compared with event-based DE. The LMI flash-based ranged between 1.5% and 3.5% with 1.5 s and 35–65 km matching scales. For 330 ms and 35 km, the spatiotemporal matching criteria used to evaluate Geostationary Lightning Mapper (GLM), the LMI flash-based DE was smaller ( |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13091746 |