Loading…

Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations

The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rat...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-02, Vol.12 (5), p.2299
Main Authors: Galiev, Elmar, Winter, Sven, Reuther, Franz, Psyk, Verena, Tulke, Marc, Brosius, Alexander, Kräusel, Verena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763
cites cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763
container_end_page
container_issue 5
container_start_page 2299
container_title Applied sciences
container_volume 12
creator Galiev, Elmar
Winter, Sven
Reuther, Franz
Psyk, Verena
Tulke, Marc
Brosius, Alexander
Kräusel, Verena
description The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.
doi_str_mv 10.3390/app12052299
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1</doaj_id><sourcerecordid>2637583205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</originalsourceid><addsrcrecordid>eNpNUdtO3DAQjRBIRZSn_oAlHtFSX-JceENcV1q1EoWXvlgTZ7J4lbWD4yD6Gf3jTnZRhV9mNDPnnDmeLPsm-IVSNf8OwyAk11LW9UF2LHlZLFQuysNP-ZfsdBw3nF4tVCX4cfZ3FSz07Am3A0ZIU0R2g2_Yh2GLPjHnWXpBdhfB7nq_g0fWTtH5NXv2Dt7dDuxH1yPFMc0NSOzBrV_YrxSBCB4h4SW7fScBN5MSAnzLfkxbKsziS_82I9eQXPDj1-yog37E0494kj3f3T5dPyxWP--X11erhVVFnhayU2ShtZqXUlrdaiFtC4LXvNLaSllxq3Ned01BRlu0hKpKVLUUSgD9hzrJlnveNsDGDLQbxD8mgDO7QohrAzE526MhImg01l0rBaVFpZsGRJXnDdpKoCCusz3XEMPrRGbMJkzR0_pGFqrUlaLD0NT5fsrGMI4Ru_-qgpv5hObTCdU_-w6O7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637583205</pqid></control><display><type>article</type><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><source>Publicly Available Content Database</source><creator>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</creator><creatorcontrib>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</creatorcontrib><description>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12052299</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adiabatic ; Adiabatic flow ; Blanking ; DC06 ; Deformation ; Electromagnetic forming ; Elongation ; Force measurement ; Hardening rate ; Heat ; Heating ; High strain rate ; high-speed forming ; Investigations ; Localization ; material properties ; numerical simulation ; Parameter identification ; Position measurement ; Simulation ; Steel ; Strain ; Strain analysis ; Strain hardening ; Temperature effects ; Tensile tests ; Tension tests ; Workpieces ; Yield strength ; Yield stress</subject><ispartof>Applied sciences, 2022-02, Vol.12 (5), p.2299</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</citedby><cites>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</cites><orcidid>0000-0002-7606-5754 ; 0000-0001-9798-8358 ; 0000-0001-6737-9199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637583205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637583205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Galiev, Elmar</creatorcontrib><creatorcontrib>Winter, Sven</creatorcontrib><creatorcontrib>Reuther, Franz</creatorcontrib><creatorcontrib>Psyk, Verena</creatorcontrib><creatorcontrib>Tulke, Marc</creatorcontrib><creatorcontrib>Brosius, Alexander</creatorcontrib><creatorcontrib>Kräusel, Verena</creatorcontrib><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><title>Applied sciences</title><description>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Blanking</subject><subject>DC06</subject><subject>Deformation</subject><subject>Electromagnetic forming</subject><subject>Elongation</subject><subject>Force measurement</subject><subject>Hardening rate</subject><subject>Heat</subject><subject>Heating</subject><subject>High strain rate</subject><subject>high-speed forming</subject><subject>Investigations</subject><subject>Localization</subject><subject>material properties</subject><subject>numerical simulation</subject><subject>Parameter identification</subject><subject>Position measurement</subject><subject>Simulation</subject><subject>Steel</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Strain hardening</subject><subject>Temperature effects</subject><subject>Tensile tests</subject><subject>Tension tests</subject><subject>Workpieces</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtO3DAQjRBIRZSn_oAlHtFSX-JceENcV1q1EoWXvlgTZ7J4lbWD4yD6Gf3jTnZRhV9mNDPnnDmeLPsm-IVSNf8OwyAk11LW9UF2LHlZLFQuysNP-ZfsdBw3nF4tVCX4cfZ3FSz07Am3A0ZIU0R2g2_Yh2GLPjHnWXpBdhfB7nq_g0fWTtH5NXv2Dt7dDuxH1yPFMc0NSOzBrV_YrxSBCB4h4SW7fScBN5MSAnzLfkxbKsziS_82I9eQXPDj1-yog37E0494kj3f3T5dPyxWP--X11erhVVFnhayU2ShtZqXUlrdaiFtC4LXvNLaSllxq3Ned01BRlu0hKpKVLUUSgD9hzrJlnveNsDGDLQbxD8mgDO7QohrAzE526MhImg01l0rBaVFpZsGRJXnDdpKoCCusz3XEMPrRGbMJkzR0_pGFqrUlaLD0NT5fsrGMI4Ru_-qgpv5hObTCdU_-w6O7A</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Galiev, Elmar</creator><creator>Winter, Sven</creator><creator>Reuther, Franz</creator><creator>Psyk, Verena</creator><creator>Tulke, Marc</creator><creator>Brosius, Alexander</creator><creator>Kräusel, Verena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7606-5754</orcidid><orcidid>https://orcid.org/0000-0001-9798-8358</orcidid><orcidid>https://orcid.org/0000-0001-6737-9199</orcidid></search><sort><creationdate>20220201</creationdate><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><author>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Blanking</topic><topic>DC06</topic><topic>Deformation</topic><topic>Electromagnetic forming</topic><topic>Elongation</topic><topic>Force measurement</topic><topic>Hardening rate</topic><topic>Heat</topic><topic>Heating</topic><topic>High strain rate</topic><topic>high-speed forming</topic><topic>Investigations</topic><topic>Localization</topic><topic>material properties</topic><topic>numerical simulation</topic><topic>Parameter identification</topic><topic>Position measurement</topic><topic>Simulation</topic><topic>Steel</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Strain hardening</topic><topic>Temperature effects</topic><topic>Tensile tests</topic><topic>Tension tests</topic><topic>Workpieces</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galiev, Elmar</creatorcontrib><creatorcontrib>Winter, Sven</creatorcontrib><creatorcontrib>Reuther, Franz</creatorcontrib><creatorcontrib>Psyk, Verena</creatorcontrib><creatorcontrib>Tulke, Marc</creatorcontrib><creatorcontrib>Brosius, Alexander</creatorcontrib><creatorcontrib>Kräusel, Verena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galiev, Elmar</au><au>Winter, Sven</au><au>Reuther, Franz</au><au>Psyk, Verena</au><au>Tulke, Marc</au><au>Brosius, Alexander</au><au>Kräusel, Verena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</atitle><jtitle>Applied sciences</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>2299</spage><pages>2299-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12052299</doi><orcidid>https://orcid.org/0000-0002-7606-5754</orcidid><orcidid>https://orcid.org/0000-0001-9798-8358</orcidid><orcidid>https://orcid.org/0000-0001-6737-9199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-02, Vol.12 (5), p.2299
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1
source Publicly Available Content Database
subjects Adiabatic
Adiabatic flow
Blanking
DC06
Deformation
Electromagnetic forming
Elongation
Force measurement
Hardening rate
Heat
Heating
High strain rate
high-speed forming
Investigations
Localization
material properties
numerical simulation
Parameter identification
Position measurement
Simulation
Steel
Strain
Strain analysis
Strain hardening
Temperature effects
Tensile tests
Tension tests
Workpieces
Yield strength
Yield stress
title Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Temperature%20Development%20in%20the%20Fracture%20Zone%20during%20Uniaxial%20Tensile%20Testing%20at%20High%20Strain%20Rate:%20Experimental%20and%20Numerical%20Investigations&rft.jtitle=Applied%20sciences&rft.au=Galiev,%20Elmar&rft.date=2022-02-01&rft.volume=12&rft.issue=5&rft.spage=2299&rft.pages=2299-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12052299&rft_dat=%3Cproquest_doaj_%3E2637583205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637583205&rft_id=info:pmid/&rfr_iscdi=true