Loading…
Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations
The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rat...
Saved in:
Published in: | Applied sciences 2022-02, Vol.12 (5), p.2299 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763 |
container_end_page | |
container_issue | 5 |
container_start_page | 2299 |
container_title | Applied sciences |
container_volume | 12 |
creator | Galiev, Elmar Winter, Sven Reuther, Franz Psyk, Verena Tulke, Marc Brosius, Alexander Kräusel, Verena |
description | The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature. |
doi_str_mv | 10.3390/app12052299 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1</doaj_id><sourcerecordid>2637583205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</originalsourceid><addsrcrecordid>eNpNUdtO3DAQjRBIRZSn_oAlHtFSX-JceENcV1q1EoWXvlgTZ7J4lbWD4yD6Gf3jTnZRhV9mNDPnnDmeLPsm-IVSNf8OwyAk11LW9UF2LHlZLFQuysNP-ZfsdBw3nF4tVCX4cfZ3FSz07Am3A0ZIU0R2g2_Yh2GLPjHnWXpBdhfB7nq_g0fWTtH5NXv2Dt7dDuxH1yPFMc0NSOzBrV_YrxSBCB4h4SW7fScBN5MSAnzLfkxbKsziS_82I9eQXPDj1-yog37E0494kj3f3T5dPyxWP--X11erhVVFnhayU2ShtZqXUlrdaiFtC4LXvNLaSllxq3Ned01BRlu0hKpKVLUUSgD9hzrJlnveNsDGDLQbxD8mgDO7QohrAzE526MhImg01l0rBaVFpZsGRJXnDdpKoCCusz3XEMPrRGbMJkzR0_pGFqrUlaLD0NT5fsrGMI4Ru_-qgpv5hObTCdU_-w6O7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637583205</pqid></control><display><type>article</type><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><source>Publicly Available Content Database</source><creator>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</creator><creatorcontrib>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</creatorcontrib><description>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12052299</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adiabatic ; Adiabatic flow ; Blanking ; DC06 ; Deformation ; Electromagnetic forming ; Elongation ; Force measurement ; Hardening rate ; Heat ; Heating ; High strain rate ; high-speed forming ; Investigations ; Localization ; material properties ; numerical simulation ; Parameter identification ; Position measurement ; Simulation ; Steel ; Strain ; Strain analysis ; Strain hardening ; Temperature effects ; Tensile tests ; Tension tests ; Workpieces ; Yield strength ; Yield stress</subject><ispartof>Applied sciences, 2022-02, Vol.12 (5), p.2299</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</citedby><cites>FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</cites><orcidid>0000-0002-7606-5754 ; 0000-0001-9798-8358 ; 0000-0001-6737-9199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637583205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637583205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Galiev, Elmar</creatorcontrib><creatorcontrib>Winter, Sven</creatorcontrib><creatorcontrib>Reuther, Franz</creatorcontrib><creatorcontrib>Psyk, Verena</creatorcontrib><creatorcontrib>Tulke, Marc</creatorcontrib><creatorcontrib>Brosius, Alexander</creatorcontrib><creatorcontrib>Kräusel, Verena</creatorcontrib><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><title>Applied sciences</title><description>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Blanking</subject><subject>DC06</subject><subject>Deformation</subject><subject>Electromagnetic forming</subject><subject>Elongation</subject><subject>Force measurement</subject><subject>Hardening rate</subject><subject>Heat</subject><subject>Heating</subject><subject>High strain rate</subject><subject>high-speed forming</subject><subject>Investigations</subject><subject>Localization</subject><subject>material properties</subject><subject>numerical simulation</subject><subject>Parameter identification</subject><subject>Position measurement</subject><subject>Simulation</subject><subject>Steel</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Strain hardening</subject><subject>Temperature effects</subject><subject>Tensile tests</subject><subject>Tension tests</subject><subject>Workpieces</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtO3DAQjRBIRZSn_oAlHtFSX-JceENcV1q1EoWXvlgTZ7J4lbWD4yD6Gf3jTnZRhV9mNDPnnDmeLPsm-IVSNf8OwyAk11LW9UF2LHlZLFQuysNP-ZfsdBw3nF4tVCX4cfZ3FSz07Am3A0ZIU0R2g2_Yh2GLPjHnWXpBdhfB7nq_g0fWTtH5NXv2Dt7dDuxH1yPFMc0NSOzBrV_YrxSBCB4h4SW7fScBN5MSAnzLfkxbKsziS_82I9eQXPDj1-yog37E0494kj3f3T5dPyxWP--X11erhVVFnhayU2ShtZqXUlrdaiFtC4LXvNLaSllxq3Ned01BRlu0hKpKVLUUSgD9hzrJlnveNsDGDLQbxD8mgDO7QohrAzE526MhImg01l0rBaVFpZsGRJXnDdpKoCCusz3XEMPrRGbMJkzR0_pGFqrUlaLD0NT5fsrGMI4Ru_-qgpv5hObTCdU_-w6O7A</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Galiev, Elmar</creator><creator>Winter, Sven</creator><creator>Reuther, Franz</creator><creator>Psyk, Verena</creator><creator>Tulke, Marc</creator><creator>Brosius, Alexander</creator><creator>Kräusel, Verena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7606-5754</orcidid><orcidid>https://orcid.org/0000-0001-9798-8358</orcidid><orcidid>https://orcid.org/0000-0001-6737-9199</orcidid></search><sort><creationdate>20220201</creationdate><title>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</title><author>Galiev, Elmar ; Winter, Sven ; Reuther, Franz ; Psyk, Verena ; Tulke, Marc ; Brosius, Alexander ; Kräusel, Verena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Blanking</topic><topic>DC06</topic><topic>Deformation</topic><topic>Electromagnetic forming</topic><topic>Elongation</topic><topic>Force measurement</topic><topic>Hardening rate</topic><topic>Heat</topic><topic>Heating</topic><topic>High strain rate</topic><topic>high-speed forming</topic><topic>Investigations</topic><topic>Localization</topic><topic>material properties</topic><topic>numerical simulation</topic><topic>Parameter identification</topic><topic>Position measurement</topic><topic>Simulation</topic><topic>Steel</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Strain hardening</topic><topic>Temperature effects</topic><topic>Tensile tests</topic><topic>Tension tests</topic><topic>Workpieces</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galiev, Elmar</creatorcontrib><creatorcontrib>Winter, Sven</creatorcontrib><creatorcontrib>Reuther, Franz</creatorcontrib><creatorcontrib>Psyk, Verena</creatorcontrib><creatorcontrib>Tulke, Marc</creatorcontrib><creatorcontrib>Brosius, Alexander</creatorcontrib><creatorcontrib>Kräusel, Verena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galiev, Elmar</au><au>Winter, Sven</au><au>Reuther, Franz</au><au>Psyk, Verena</au><au>Tulke, Marc</au><au>Brosius, Alexander</au><au>Kräusel, Verena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations</atitle><jtitle>Applied sciences</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>2299</spage><pages>2299-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The quality of simulation results significantly depends on the accuracy of the material model and parameters. In high strain rate forming processes such as, e.g., electromagnetic forming or adiabatic blanking, two superposing and opposing effects influence the flow stress of the material: strain rate hardening and thermal softening due to adiabatic heating. The presented work contributes to understanding these influences better by quantifying the adiabatic heating of the workpiece during deformation and failure under high-speed loading. For this purpose, uniaxial tensile tests at different high strain rates are analyzed experimentally and numerically. A special focus of the analysis of the tensile test was put on identifying a characteristic time- and position-dependent strain rate. In the experiments, in addition to the measurement of the force and elongation, the temperature in the fracture region is recorded using a thermal camera and a pyrometer for higher strain rates. Simulations are carried out in LS-Dyna using the GISSMO model as a damage and failure model. Both experimental and simulated results showed good agreement regarding the time-dependent force-displacement curve and the maximum occurring temperature.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12052299</doi><orcidid>https://orcid.org/0000-0002-7606-5754</orcidid><orcidid>https://orcid.org/0000-0001-9798-8358</orcidid><orcidid>https://orcid.org/0000-0001-6737-9199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-02, Vol.12 (5), p.2299 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_540ab5e9fd2140a685bba1844bec81e1 |
source | Publicly Available Content Database |
subjects | Adiabatic Adiabatic flow Blanking DC06 Deformation Electromagnetic forming Elongation Force measurement Hardening rate Heat Heating High strain rate high-speed forming Investigations Localization material properties numerical simulation Parameter identification Position measurement Simulation Steel Strain Strain analysis Strain hardening Temperature effects Tensile tests Tension tests Workpieces Yield strength Yield stress |
title | Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Temperature%20Development%20in%20the%20Fracture%20Zone%20during%20Uniaxial%20Tensile%20Testing%20at%20High%20Strain%20Rate:%20Experimental%20and%20Numerical%20Investigations&rft.jtitle=Applied%20sciences&rft.au=Galiev,%20Elmar&rft.date=2022-02-01&rft.volume=12&rft.issue=5&rft.spage=2299&rft.pages=2299-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12052299&rft_dat=%3Cproquest_doaj_%3E2637583205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-2f3138dc50722c5d512cda1090855c2280c5409fb6381decc3687e392131a0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637583205&rft_id=info:pmid/&rfr_iscdi=true |