Loading…
A Novel Semi-Soft Decision Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks
Spectrum sensing (SS) is an essential part of cognitive radio (CR) technology, and cooperative spectrum sensing (CSS) could efficiently improve the detection performance in environments with fading and shadowing effects, solving hidden terminal problems. Hard and Soft decision detection are usually...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (11), p.2522 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectrum sensing (SS) is an essential part of cognitive radio (CR) technology, and cooperative spectrum sensing (CSS) could efficiently improve the detection performance in environments with fading and shadowing effects, solving hidden terminal problems. Hard and Soft decision detection are usually employed at the fusion center (FC) to detect the presence or absence of the primary user (PU). However, soft decision detection achieves better sensing performance than hard decision detection at the expense of the local transmission band. In this paper, we propose a tradeoff scheme between the sensing performance and band cost. The sensing strategy is designed based on three modules. Firstly, a local detection module is used to detect the PU signal by energy detection (ED) and send decision results in terms of 1-bit or 2-bit information. Secondly, and most importantly, the FC estimates the received decision data through a data reconstruction module based on the statistical distribution such that the extra thresholds are not needed. Finally, a global decision module is in charge of fusing the estimated data and making a final decision. The results from a simulation show that the detection performance of the proposed scheme outperforms that of other algorithms. Moreover, savings on the transmission band cost can be made compared with soft decision detection. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19112522 |