Loading…

Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases

Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretatio...

Full description

Saved in:
Bibliographic Details
Published in:Genome medicine 2021-10, Vol.13 (1), p.153-153, Article 153
Main Authors: De La Vega, Francisco M, Chowdhury, Shimul, Moore, Barry, Frise, Erwin, McCarthy, Jeanette, Hernandez, Edgar Javier, Wong, Terence, James, Kiely, Guidugli, Lucia, Agrawal, Pankaj B, Genetti, Casie A, Brownstein, Catherine A, Beggs, Alan H, Löscher, Britt-Sabina, Franke, Andre, Boone, Braden, Levy, Shawn E, Õunap, Katrin, Pajusalu, Sander, Huentelman, Matt, Ramsey, Keri, Naymik, Marcus, Narayanan, Vinodh, Veeraraghavan, Narayanan, Billings, Paul, Reese, Martin G, Yandell, Mark, Kingsmore, Stephen F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93
cites cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93
container_end_page 153
container_issue 1
container_start_page 153
container_title Genome medicine
container_volume 13
creator De La Vega, Francisco M
Chowdhury, Shimul
Moore, Barry
Frise, Erwin
McCarthy, Jeanette
Hernandez, Edgar Javier
Wong, Terence
James, Kiely
Guidugli, Lucia
Agrawal, Pankaj B
Genetti, Casie A
Brownstein, Catherine A
Beggs, Alan H
Löscher, Britt-Sabina
Franke, Andre
Boone, Braden
Levy, Shawn E
Õunap, Katrin
Pajusalu, Sander
Huentelman, Matt
Ramsey, Keri
Naymik, Marcus
Narayanan, Vinodh
Veeraraghavan, Narayanan
Billings, Paul
Reese, Martin G
Yandell, Mark
Kingsmore, Stephen F
description Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.
doi_str_mv 10.1186/s13073-021-00965-0
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681630777</galeid><doaj_id>oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb</doaj_id><sourcerecordid>A681630777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</originalsourceid><addsrcrecordid>eNptkl-L1DAUxYso7rr6BXyQgiC-dE3a_GlehGHZ1YUFXxR8CzfJ7UyGNhmTzoLPfnEzM-s6I9KHNuee-ys9PVX1mpJLSnvxIdOOyK4hLW0IUYI35El1TiUXjVLs-9Oj57PqRc5rQgRrmXxenXVMMM4UPa9-LdLsB289jLUPM46jX2KwWGMAM2KubZw2CVcYsr_HuszihHtnKvIMs4-hhuDqovtwOMahtkXyDmasnYdliLmQhpjqBGkPwdnbMsoIZfKyejbAmPHVw_2i-nZz_fXqc3P35dPt1eKusVyxuTGqd9x2lnHC-qG3EgyzgkrFoJPUOgDat65X3BmmHEUupJFO9oSAa7lR3UV1e-C6CGu9SX6C9FNH8HovxLTUUNKwI2rOuJGqVW1HFOOolGOcgkBDCWFmMIX18cDabM2EzmKYE4wn0NNJ8Cu9jPe655TLtiuA9w-AFH9sMc968tmW_CFg3Gbd8r6lpJdiZ337j3UdtymUqHaujlJa8vnrWkL5AB-GWN5rd1C9ED0VpStSFtflf1zlcjh5GwMOvugnC--OFlYI47zKcdzu_nQ-NbYHo00x54TDYxiU6F1f9aGvuvRV7_uqSVl6cxzj48qfgna_AQmH5sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583111594</pqid></control><display><type>article</type><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</creator><creatorcontrib>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</creatorcontrib><description>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-021-00965-0</identifier><identifier>PMID: 34645491</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Automation ; Biotechnology industry ; Databases, Genetic ; Decision making ; Diagnosis ; Disease ; Female ; Genetic counseling ; Genetic disorders ; Genetic diversity ; Genetic research ; Genomes ; Genomics ; Genomics - methods ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Health aspects ; Heredity ; Hospitals ; Humans ; Laboratories ; Male ; Medical colleges ; Medical research ; Medicine, Experimental ; Patients ; Pediatrics ; Phenotype ; Phenotypes ; Phenotyping ; Rankings ; Rare Diseases - genetics ; Retrospective Studies ; Whole Exome Sequencing</subject><ispartof>Genome medicine, 2021-10, Vol.13 (1), p.153-153, Article 153</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</citedby><cites>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</cites><orcidid>0000-0002-9228-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583111594?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34645491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De La Vega, Francisco M</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Moore, Barry</creatorcontrib><creatorcontrib>Frise, Erwin</creatorcontrib><creatorcontrib>McCarthy, Jeanette</creatorcontrib><creatorcontrib>Hernandez, Edgar Javier</creatorcontrib><creatorcontrib>Wong, Terence</creatorcontrib><creatorcontrib>James, Kiely</creatorcontrib><creatorcontrib>Guidugli, Lucia</creatorcontrib><creatorcontrib>Agrawal, Pankaj B</creatorcontrib><creatorcontrib>Genetti, Casie A</creatorcontrib><creatorcontrib>Brownstein, Catherine A</creatorcontrib><creatorcontrib>Beggs, Alan H</creatorcontrib><creatorcontrib>Löscher, Britt-Sabina</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Boone, Braden</creatorcontrib><creatorcontrib>Levy, Shawn E</creatorcontrib><creatorcontrib>Õunap, Katrin</creatorcontrib><creatorcontrib>Pajusalu, Sander</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Ramsey, Keri</creatorcontrib><creatorcontrib>Naymik, Marcus</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Veeraraghavan, Narayanan</creatorcontrib><creatorcontrib>Billings, Paul</creatorcontrib><creatorcontrib>Reese, Martin G</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Kingsmore, Stephen F</creatorcontrib><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biotechnology industry</subject><subject>Databases, Genetic</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Female</subject><subject>Genetic counseling</subject><subject>Genetic disorders</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Heredity</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medical colleges</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Rankings</subject><subject>Rare Diseases - genetics</subject><subject>Retrospective Studies</subject><subject>Whole Exome Sequencing</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl-L1DAUxYso7rr6BXyQgiC-dE3a_GlehGHZ1YUFXxR8CzfJ7UyGNhmTzoLPfnEzM-s6I9KHNuee-ys9PVX1mpJLSnvxIdOOyK4hLW0IUYI35El1TiUXjVLs-9Oj57PqRc5rQgRrmXxenXVMMM4UPa9-LdLsB289jLUPM46jX2KwWGMAM2KubZw2CVcYsr_HuszihHtnKvIMs4-hhuDqovtwOMahtkXyDmasnYdliLmQhpjqBGkPwdnbMsoIZfKyejbAmPHVw_2i-nZz_fXqc3P35dPt1eKusVyxuTGqd9x2lnHC-qG3EgyzgkrFoJPUOgDat65X3BmmHEUupJFO9oSAa7lR3UV1e-C6CGu9SX6C9FNH8HovxLTUUNKwI2rOuJGqVW1HFOOolGOcgkBDCWFmMIX18cDabM2EzmKYE4wn0NNJ8Cu9jPe655TLtiuA9w-AFH9sMc968tmW_CFg3Gbd8r6lpJdiZ337j3UdtymUqHaujlJa8vnrWkL5AB-GWN5rd1C9ED0VpStSFtflf1zlcjh5GwMOvugnC--OFlYI47zKcdzu_nQ-NbYHo00x54TDYxiU6F1f9aGvuvRV7_uqSVl6cxzj48qfgna_AQmH5sg</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>De La Vega, Francisco M</creator><creator>Chowdhury, Shimul</creator><creator>Moore, Barry</creator><creator>Frise, Erwin</creator><creator>McCarthy, Jeanette</creator><creator>Hernandez, Edgar Javier</creator><creator>Wong, Terence</creator><creator>James, Kiely</creator><creator>Guidugli, Lucia</creator><creator>Agrawal, Pankaj B</creator><creator>Genetti, Casie A</creator><creator>Brownstein, Catherine A</creator><creator>Beggs, Alan H</creator><creator>Löscher, Britt-Sabina</creator><creator>Franke, Andre</creator><creator>Boone, Braden</creator><creator>Levy, Shawn E</creator><creator>Õunap, Katrin</creator><creator>Pajusalu, Sander</creator><creator>Huentelman, Matt</creator><creator>Ramsey, Keri</creator><creator>Naymik, Marcus</creator><creator>Narayanan, Vinodh</creator><creator>Veeraraghavan, Narayanan</creator><creator>Billings, Paul</creator><creator>Reese, Martin G</creator><creator>Yandell, Mark</creator><creator>Kingsmore, Stephen F</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9228-2097</orcidid></search><sort><creationdate>20211014</creationdate><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><author>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biotechnology industry</topic><topic>Databases, Genetic</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Female</topic><topic>Genetic counseling</topic><topic>Genetic disorders</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Heredity</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medical colleges</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Rankings</topic><topic>Rare Diseases - genetics</topic><topic>Retrospective Studies</topic><topic>Whole Exome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De La Vega, Francisco M</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Moore, Barry</creatorcontrib><creatorcontrib>Frise, Erwin</creatorcontrib><creatorcontrib>McCarthy, Jeanette</creatorcontrib><creatorcontrib>Hernandez, Edgar Javier</creatorcontrib><creatorcontrib>Wong, Terence</creatorcontrib><creatorcontrib>James, Kiely</creatorcontrib><creatorcontrib>Guidugli, Lucia</creatorcontrib><creatorcontrib>Agrawal, Pankaj B</creatorcontrib><creatorcontrib>Genetti, Casie A</creatorcontrib><creatorcontrib>Brownstein, Catherine A</creatorcontrib><creatorcontrib>Beggs, Alan H</creatorcontrib><creatorcontrib>Löscher, Britt-Sabina</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Boone, Braden</creatorcontrib><creatorcontrib>Levy, Shawn E</creatorcontrib><creatorcontrib>Õunap, Katrin</creatorcontrib><creatorcontrib>Pajusalu, Sander</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Ramsey, Keri</creatorcontrib><creatorcontrib>Naymik, Marcus</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Veeraraghavan, Narayanan</creatorcontrib><creatorcontrib>Billings, Paul</creatorcontrib><creatorcontrib>Reese, Martin G</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Kingsmore, Stephen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De La Vega, Francisco M</au><au>Chowdhury, Shimul</au><au>Moore, Barry</au><au>Frise, Erwin</au><au>McCarthy, Jeanette</au><au>Hernandez, Edgar Javier</au><au>Wong, Terence</au><au>James, Kiely</au><au>Guidugli, Lucia</au><au>Agrawal, Pankaj B</au><au>Genetti, Casie A</au><au>Brownstein, Catherine A</au><au>Beggs, Alan H</au><au>Löscher, Britt-Sabina</au><au>Franke, Andre</au><au>Boone, Braden</au><au>Levy, Shawn E</au><au>Õunap, Katrin</au><au>Pajusalu, Sander</au><au>Huentelman, Matt</au><au>Ramsey, Keri</au><au>Naymik, Marcus</au><au>Narayanan, Vinodh</au><au>Veeraraghavan, Narayanan</au><au>Billings, Paul</au><au>Reese, Martin G</au><au>Yandell, Mark</au><au>Kingsmore, Stephen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><artnum>153</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34645491</pmid><doi>10.1186/s13073-021-00965-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9228-2097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-994X
ispartof Genome medicine, 2021-10, Vol.13 (1), p.153-153, Article 153
issn 1756-994X
1756-994X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Analysis
Artificial Intelligence
Automation
Biotechnology industry
Databases, Genetic
Decision making
Diagnosis
Disease
Female
Genetic counseling
Genetic disorders
Genetic diversity
Genetic research
Genomes
Genomics
Genomics - methods
Genotype
Genotype & phenotype
Genotypes
Health aspects
Heredity
Hospitals
Humans
Laboratories
Male
Medical colleges
Medical research
Medicine, Experimental
Patients
Pediatrics
Phenotype
Phenotypes
Phenotyping
Rankings
Rare Diseases - genetics
Retrospective Studies
Whole Exome Sequencing
title Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enables%20comprehensive%20genome%20interpretation%20and%20nomination%20of%20candidate%20diagnoses%20for%20rare%20genetic%20diseases&rft.jtitle=Genome%20medicine&rft.au=De%20La%20Vega,%20Francisco%20M&rft.date=2021-10-14&rft.volume=13&rft.issue=1&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.artnum=153&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-021-00965-0&rft_dat=%3Cgale_doaj_%3EA681630777%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583111594&rft_id=info:pmid/34645491&rft_galeid=A681630777&rfr_iscdi=true