Loading…
Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases
Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretatio...
Saved in:
Published in: | Genome medicine 2021-10, Vol.13 (1), p.153-153, Article 153 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93 |
container_end_page | 153 |
container_issue | 1 |
container_start_page | 153 |
container_title | Genome medicine |
container_volume | 13 |
creator | De La Vega, Francisco M Chowdhury, Shimul Moore, Barry Frise, Erwin McCarthy, Jeanette Hernandez, Edgar Javier Wong, Terence James, Kiely Guidugli, Lucia Agrawal, Pankaj B Genetti, Casie A Brownstein, Catherine A Beggs, Alan H Löscher, Britt-Sabina Franke, Andre Boone, Braden Levy, Shawn E Õunap, Katrin Pajusalu, Sander Huentelman, Matt Ramsey, Keri Naymik, Marcus Narayanan, Vinodh Veeraraghavan, Narayanan Billings, Paul Reese, Martin G Yandell, Mark Kingsmore, Stephen F |
description | Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.
We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed.
GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases.
GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review. |
doi_str_mv | 10.1186/s13073-021-00965-0 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681630777</galeid><doaj_id>oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb</doaj_id><sourcerecordid>A681630777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</originalsourceid><addsrcrecordid>eNptkl-L1DAUxYso7rr6BXyQgiC-dE3a_GlehGHZ1YUFXxR8CzfJ7UyGNhmTzoLPfnEzM-s6I9KHNuee-ys9PVX1mpJLSnvxIdOOyK4hLW0IUYI35El1TiUXjVLs-9Oj57PqRc5rQgRrmXxenXVMMM4UPa9-LdLsB289jLUPM46jX2KwWGMAM2KubZw2CVcYsr_HuszihHtnKvIMs4-hhuDqovtwOMahtkXyDmasnYdliLmQhpjqBGkPwdnbMsoIZfKyejbAmPHVw_2i-nZz_fXqc3P35dPt1eKusVyxuTGqd9x2lnHC-qG3EgyzgkrFoJPUOgDat65X3BmmHEUupJFO9oSAa7lR3UV1e-C6CGu9SX6C9FNH8HovxLTUUNKwI2rOuJGqVW1HFOOolGOcgkBDCWFmMIX18cDabM2EzmKYE4wn0NNJ8Cu9jPe655TLtiuA9w-AFH9sMc968tmW_CFg3Gbd8r6lpJdiZ337j3UdtymUqHaujlJa8vnrWkL5AB-GWN5rd1C9ED0VpStSFtflf1zlcjh5GwMOvugnC--OFlYI47zKcdzu_nQ-NbYHo00x54TDYxiU6F1f9aGvuvRV7_uqSVl6cxzj48qfgna_AQmH5sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583111594</pqid></control><display><type>article</type><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</creator><creatorcontrib>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</creatorcontrib><description>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.
We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed.
GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases.
GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-021-00965-0</identifier><identifier>PMID: 34645491</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Automation ; Biotechnology industry ; Databases, Genetic ; Decision making ; Diagnosis ; Disease ; Female ; Genetic counseling ; Genetic disorders ; Genetic diversity ; Genetic research ; Genomes ; Genomics ; Genomics - methods ; Genotype ; Genotype & phenotype ; Genotypes ; Health aspects ; Heredity ; Hospitals ; Humans ; Laboratories ; Male ; Medical colleges ; Medical research ; Medicine, Experimental ; Patients ; Pediatrics ; Phenotype ; Phenotypes ; Phenotyping ; Rankings ; Rare Diseases - genetics ; Retrospective Studies ; Whole Exome Sequencing</subject><ispartof>Genome medicine, 2021-10, Vol.13 (1), p.153-153, Article 153</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</citedby><cites>FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</cites><orcidid>0000-0002-9228-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583111594?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34645491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De La Vega, Francisco M</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Moore, Barry</creatorcontrib><creatorcontrib>Frise, Erwin</creatorcontrib><creatorcontrib>McCarthy, Jeanette</creatorcontrib><creatorcontrib>Hernandez, Edgar Javier</creatorcontrib><creatorcontrib>Wong, Terence</creatorcontrib><creatorcontrib>James, Kiely</creatorcontrib><creatorcontrib>Guidugli, Lucia</creatorcontrib><creatorcontrib>Agrawal, Pankaj B</creatorcontrib><creatorcontrib>Genetti, Casie A</creatorcontrib><creatorcontrib>Brownstein, Catherine A</creatorcontrib><creatorcontrib>Beggs, Alan H</creatorcontrib><creatorcontrib>Löscher, Britt-Sabina</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Boone, Braden</creatorcontrib><creatorcontrib>Levy, Shawn E</creatorcontrib><creatorcontrib>Õunap, Katrin</creatorcontrib><creatorcontrib>Pajusalu, Sander</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Ramsey, Keri</creatorcontrib><creatorcontrib>Naymik, Marcus</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Veeraraghavan, Narayanan</creatorcontrib><creatorcontrib>Billings, Paul</creatorcontrib><creatorcontrib>Reese, Martin G</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Kingsmore, Stephen F</creatorcontrib><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.
We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed.
GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases.
GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biotechnology industry</subject><subject>Databases, Genetic</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Female</subject><subject>Genetic counseling</subject><subject>Genetic disorders</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Heredity</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medical colleges</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Rankings</subject><subject>Rare Diseases - genetics</subject><subject>Retrospective Studies</subject><subject>Whole Exome Sequencing</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl-L1DAUxYso7rr6BXyQgiC-dE3a_GlehGHZ1YUFXxR8CzfJ7UyGNhmTzoLPfnEzM-s6I9KHNuee-ys9PVX1mpJLSnvxIdOOyK4hLW0IUYI35El1TiUXjVLs-9Oj57PqRc5rQgRrmXxenXVMMM4UPa9-LdLsB289jLUPM46jX2KwWGMAM2KubZw2CVcYsr_HuszihHtnKvIMs4-hhuDqovtwOMahtkXyDmasnYdliLmQhpjqBGkPwdnbMsoIZfKyejbAmPHVw_2i-nZz_fXqc3P35dPt1eKusVyxuTGqd9x2lnHC-qG3EgyzgkrFoJPUOgDat65X3BmmHEUupJFO9oSAa7lR3UV1e-C6CGu9SX6C9FNH8HovxLTUUNKwI2rOuJGqVW1HFOOolGOcgkBDCWFmMIX18cDabM2EzmKYE4wn0NNJ8Cu9jPe655TLtiuA9w-AFH9sMc968tmW_CFg3Gbd8r6lpJdiZ337j3UdtymUqHaujlJa8vnrWkL5AB-GWN5rd1C9ED0VpStSFtflf1zlcjh5GwMOvugnC--OFlYI47zKcdzu_nQ-NbYHo00x54TDYxiU6F1f9aGvuvRV7_uqSVl6cxzj48qfgna_AQmH5sg</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>De La Vega, Francisco M</creator><creator>Chowdhury, Shimul</creator><creator>Moore, Barry</creator><creator>Frise, Erwin</creator><creator>McCarthy, Jeanette</creator><creator>Hernandez, Edgar Javier</creator><creator>Wong, Terence</creator><creator>James, Kiely</creator><creator>Guidugli, Lucia</creator><creator>Agrawal, Pankaj B</creator><creator>Genetti, Casie A</creator><creator>Brownstein, Catherine A</creator><creator>Beggs, Alan H</creator><creator>Löscher, Britt-Sabina</creator><creator>Franke, Andre</creator><creator>Boone, Braden</creator><creator>Levy, Shawn E</creator><creator>Õunap, Katrin</creator><creator>Pajusalu, Sander</creator><creator>Huentelman, Matt</creator><creator>Ramsey, Keri</creator><creator>Naymik, Marcus</creator><creator>Narayanan, Vinodh</creator><creator>Veeraraghavan, Narayanan</creator><creator>Billings, Paul</creator><creator>Reese, Martin G</creator><creator>Yandell, Mark</creator><creator>Kingsmore, Stephen F</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9228-2097</orcidid></search><sort><creationdate>20211014</creationdate><title>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</title><author>De La Vega, Francisco M ; Chowdhury, Shimul ; Moore, Barry ; Frise, Erwin ; McCarthy, Jeanette ; Hernandez, Edgar Javier ; Wong, Terence ; James, Kiely ; Guidugli, Lucia ; Agrawal, Pankaj B ; Genetti, Casie A ; Brownstein, Catherine A ; Beggs, Alan H ; Löscher, Britt-Sabina ; Franke, Andre ; Boone, Braden ; Levy, Shawn E ; Õunap, Katrin ; Pajusalu, Sander ; Huentelman, Matt ; Ramsey, Keri ; Naymik, Marcus ; Narayanan, Vinodh ; Veeraraghavan, Narayanan ; Billings, Paul ; Reese, Martin G ; Yandell, Mark ; Kingsmore, Stephen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biotechnology industry</topic><topic>Databases, Genetic</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Female</topic><topic>Genetic counseling</topic><topic>Genetic disorders</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Heredity</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medical colleges</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Rankings</topic><topic>Rare Diseases - genetics</topic><topic>Retrospective Studies</topic><topic>Whole Exome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De La Vega, Francisco M</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Moore, Barry</creatorcontrib><creatorcontrib>Frise, Erwin</creatorcontrib><creatorcontrib>McCarthy, Jeanette</creatorcontrib><creatorcontrib>Hernandez, Edgar Javier</creatorcontrib><creatorcontrib>Wong, Terence</creatorcontrib><creatorcontrib>James, Kiely</creatorcontrib><creatorcontrib>Guidugli, Lucia</creatorcontrib><creatorcontrib>Agrawal, Pankaj B</creatorcontrib><creatorcontrib>Genetti, Casie A</creatorcontrib><creatorcontrib>Brownstein, Catherine A</creatorcontrib><creatorcontrib>Beggs, Alan H</creatorcontrib><creatorcontrib>Löscher, Britt-Sabina</creatorcontrib><creatorcontrib>Franke, Andre</creatorcontrib><creatorcontrib>Boone, Braden</creatorcontrib><creatorcontrib>Levy, Shawn E</creatorcontrib><creatorcontrib>Õunap, Katrin</creatorcontrib><creatorcontrib>Pajusalu, Sander</creatorcontrib><creatorcontrib>Huentelman, Matt</creatorcontrib><creatorcontrib>Ramsey, Keri</creatorcontrib><creatorcontrib>Naymik, Marcus</creatorcontrib><creatorcontrib>Narayanan, Vinodh</creatorcontrib><creatorcontrib>Veeraraghavan, Narayanan</creatorcontrib><creatorcontrib>Billings, Paul</creatorcontrib><creatorcontrib>Reese, Martin G</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Kingsmore, Stephen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De La Vega, Francisco M</au><au>Chowdhury, Shimul</au><au>Moore, Barry</au><au>Frise, Erwin</au><au>McCarthy, Jeanette</au><au>Hernandez, Edgar Javier</au><au>Wong, Terence</au><au>James, Kiely</au><au>Guidugli, Lucia</au><au>Agrawal, Pankaj B</au><au>Genetti, Casie A</au><au>Brownstein, Catherine A</au><au>Beggs, Alan H</au><au>Löscher, Britt-Sabina</au><au>Franke, Andre</au><au>Boone, Braden</au><au>Levy, Shawn E</au><au>Õunap, Katrin</au><au>Pajusalu, Sander</au><au>Huentelman, Matt</au><au>Ramsey, Keri</au><au>Naymik, Marcus</au><au>Narayanan, Vinodh</au><au>Veeraraghavan, Narayanan</au><au>Billings, Paul</au><au>Reese, Martin G</au><au>Yandell, Mark</au><au>Kingsmore, Stephen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2021-10-14</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>153</spage><epage>153</epage><pages>153-153</pages><artnum>153</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.
We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed.
GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases.
GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34645491</pmid><doi>10.1186/s13073-021-00965-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9228-2097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-994X |
ispartof | Genome medicine, 2021-10, Vol.13 (1), p.153-153, Article 153 |
issn | 1756-994X 1756-994X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_545b7929230945e99d451a6eb1004bfb |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Artificial Intelligence Automation Biotechnology industry Databases, Genetic Decision making Diagnosis Disease Female Genetic counseling Genetic disorders Genetic diversity Genetic research Genomes Genomics Genomics - methods Genotype Genotype & phenotype Genotypes Health aspects Heredity Hospitals Humans Laboratories Male Medical colleges Medical research Medicine, Experimental Patients Pediatrics Phenotype Phenotypes Phenotyping Rankings Rare Diseases - genetics Retrospective Studies Whole Exome Sequencing |
title | Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enables%20comprehensive%20genome%20interpretation%20and%20nomination%20of%20candidate%20diagnoses%20for%20rare%20genetic%20diseases&rft.jtitle=Genome%20medicine&rft.au=De%20La%20Vega,%20Francisco%20M&rft.date=2021-10-14&rft.volume=13&rft.issue=1&rft.spage=153&rft.epage=153&rft.pages=153-153&rft.artnum=153&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-021-00965-0&rft_dat=%3Cgale_doaj_%3EA681630777%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-b98d5c3c45048f8c7ab4c61794a371cdaa182d895db49d1e567b7d7800ad25b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583111594&rft_id=info:pmid/34645491&rft_galeid=A681630777&rfr_iscdi=true |