Loading…

Analysis of deafness susceptibility gene of neonates in northern Guangdong, China

This study aimed to explore the molecular epidemiology characteristics of deafness susceptibility genes in neonates in northern Guangdong and provide a scientific basis for deafness prevention and control. A total of 10,183 neonates were recruited between January 2018 and December 2022 at Yuebei Peo...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-01, Vol.14 (1), p.362-362, Article 362
Main Authors: Ma, Zhanzhong, Huang, Wenbo, Xu, Jing, Qiu, Jianwu, Liu, Yulan, Ye, Meixian, Fan, Shushu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to explore the molecular epidemiology characteristics of deafness susceptibility genes in neonates in northern Guangdong and provide a scientific basis for deafness prevention and control. A total of 10,183 neonates were recruited between January 2018 and December 2022 at Yuebei People's Hospital. Among these, a PCR hybridization screening group of 8276 neonates was tested for four deafness genes: GJB2, SLC26A4, mtDNA , and GJB3 by PCR hybridization. Another group used next-generation sequencing (NGS) to detect genetic susceptibility genes in 1907 neonates. In PCR hybridization screening group, 346 (4.18%) of 8276 neonates were found to be carriers of the deafness gene. Among these, 182 (2.2%) had GJB2 variants, 114 (1.38%) had SLC26A4 variants, 35 (0.42%) had mtDNA variants, and 15 (0.18%) had GJB3 variants. In NGS Screening Group, 195 out of 1907 neonates were found to be carriers of the deafness gene, with a positive rate of 10.22%. Among these, 137 (7.18%) had GJB2 variants, 41 (2.15%) had SLC26A4 variants, 11 (0.58%) had mtDNA variants, and 6 (0.31%) had GJB3 variants. The prevalence of deafness gene variants was high in Northern Guangdong Province. The most common gene for deafness was GJB2 , followed by SLC26A4 and mtDNA . GJB3 variants are rare. Compared with PCR hybridization method, NGS technology can expand the screening scope and greatly improve the detection rate of deafness genes. The c.109G>A of GJB2 was found to occur at a high frequency, which should be considered. Therefore, it is important to conduct neonatal deafness gene screening to prevent and control hereditary deafness.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-49530-2