Loading…

GRACC: GRid ACcounting Collector

The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As t...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Web of conferences 2019, Vol.214, p.3032
Main Authors: Weitzel, Derek, Bockelman, Brian, Zvada, Marian, Retzke, Kevin, Bhat, Shreyas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313
cites cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313
container_end_page
container_issue
container_start_page 3032
container_title EPJ Web of conferences
container_volume 214
creator Weitzel, Derek
Bockelman, Brian
Zvada, Marian
Retzke, Kevin
Bhat, Shreyas
description The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data. In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.
doi_str_mv 10.1051/epjconf/201921403032
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_547a79e54bca42faa676409651b960e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_547a79e54bca42faa676409651b960e1</doaj_id><sourcerecordid>2297143153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Aw8Fz7Ez-y9ZbyVoWygIouBt2d3sloSYrZv04Lc3tUU6lzcMjzePHyH3CI8IAhd-37jYhQUFVBQ5MGD0ikwoAmSA_PP6Yr8ls75vYBymFBNyQuart2VZPo1SV_Nl6eKhG-puNy9j23o3xHRHboJpez8765R8vDy_l-ts-7ralMtt5hjFIaOeI5dBKAhgi5xZtEIiUmstp7RCIZ1VFShVUG5C4SV1kgcocm4KUTFkU7I55VbRNHqf6i-TfnQ0tf47xLTTJg21a70WPDe58oJbZzgNxshcclBSoFUS_DHr4ZS1T_H74PtBN_GQurG-plTlyBkKNrr4yeVS7Pvkw_9XBH1Eq89o9SVa9gv_Z2kR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297143153</pqid></control><display><type>article</type><title>GRACC: GRid ACcounting Collector</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas</creator><contributor>Hristov, P. ; Smirnova, O. ; Betev, L. ; Forti, A. ; Litmaath, M.</contributor><creatorcontrib>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas ; Hristov, P. ; Smirnova, O. ; Betev, L. ; Forti, A. ; Litmaath, M.</creatorcontrib><description>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data. In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201921403032</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Data storage ; Scientific visualization ; Visualization</subject><ispartof>EPJ Web of conferences, 2019, Vol.214, p.3032</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</citedby><cites>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2297143153?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4022,23929,23930,25139,25752,27922,27923,27924,37011,44589</link.rule.ids></links><search><contributor>Hristov, P.</contributor><contributor>Smirnova, O.</contributor><contributor>Betev, L.</contributor><contributor>Forti, A.</contributor><contributor>Litmaath, M.</contributor><creatorcontrib>Weitzel, Derek</creatorcontrib><creatorcontrib>Bockelman, Brian</creatorcontrib><creatorcontrib>Zvada, Marian</creatorcontrib><creatorcontrib>Retzke, Kevin</creatorcontrib><creatorcontrib>Bhat, Shreyas</creatorcontrib><title>GRACC: GRid ACcounting Collector</title><title>EPJ Web of conferences</title><description>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data. In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</description><subject>Data storage</subject><subject>Scientific visualization</subject><subject>Visualization</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Aw8Fz7Ez-y9ZbyVoWygIouBt2d3sloSYrZv04Lc3tUU6lzcMjzePHyH3CI8IAhd-37jYhQUFVBQ5MGD0ikwoAmSA_PP6Yr8ls75vYBymFBNyQuart2VZPo1SV_Nl6eKhG-puNy9j23o3xHRHboJpez8765R8vDy_l-ts-7ralMtt5hjFIaOeI5dBKAhgi5xZtEIiUmstp7RCIZ1VFShVUG5C4SV1kgcocm4KUTFkU7I55VbRNHqf6i-TfnQ0tf47xLTTJg21a70WPDe58oJbZzgNxshcclBSoFUS_DHr4ZS1T_H74PtBN_GQurG-plTlyBkKNrr4yeVS7Pvkw_9XBH1Eq89o9SVa9gv_Z2kR</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Weitzel, Derek</creator><creator>Bockelman, Brian</creator><creator>Zvada, Marian</creator><creator>Retzke, Kevin</creator><creator>Bhat, Shreyas</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2019</creationdate><title>GRACC: GRid ACcounting Collector</title><author>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data storage</topic><topic>Scientific visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weitzel, Derek</creatorcontrib><creatorcontrib>Bockelman, Brian</creatorcontrib><creatorcontrib>Zvada, Marian</creatorcontrib><creatorcontrib>Retzke, Kevin</creatorcontrib><creatorcontrib>Bhat, Shreyas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EPJ Web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weitzel, Derek</au><au>Bockelman, Brian</au><au>Zvada, Marian</au><au>Retzke, Kevin</au><au>Bhat, Shreyas</au><au>Hristov, P.</au><au>Smirnova, O.</au><au>Betev, L.</au><au>Forti, A.</au><au>Litmaath, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRACC: GRid ACcounting Collector</atitle><jtitle>EPJ Web of conferences</jtitle><date>2019</date><risdate>2019</risdate><volume>214</volume><spage>3032</spage><pages>3032-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data. In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201921403032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2100-014X
ispartof EPJ Web of conferences, 2019, Vol.214, p.3032
issn 2100-014X
2101-6275
2100-014X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_547a79e54bca42faa676409651b960e1
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Data storage
Scientific visualization
Visualization
title GRACC: GRid ACcounting Collector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRACC:%20GRid%20ACcounting%20Collector&rft.jtitle=EPJ%20Web%20of%20conferences&rft.au=Weitzel,%20Derek&rft.date=2019&rft.volume=214&rft.spage=3032&rft.pages=3032-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201921403032&rft_dat=%3Cproquest_doaj_%3E2297143153%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2297143153&rft_id=info:pmid/&rfr_iscdi=true