Loading…
GRACC: GRid ACcounting Collector
The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As t...
Saved in:
Published in: | EPJ Web of conferences 2019, Vol.214, p.3032 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313 |
container_end_page | |
container_issue | |
container_start_page | 3032 |
container_title | EPJ Web of conferences |
container_volume | 214 |
creator | Weitzel, Derek Bockelman, Brian Zvada, Marian Retzke, Kevin Bhat, Shreyas |
description | The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data.
In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization. |
doi_str_mv | 10.1051/epjconf/201921403032 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_547a79e54bca42faa676409651b960e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_547a79e54bca42faa676409651b960e1</doaj_id><sourcerecordid>2297143153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Aw8Fz7Ez-y9ZbyVoWygIouBt2d3sloSYrZv04Lc3tUU6lzcMjzePHyH3CI8IAhd-37jYhQUFVBQ5MGD0ikwoAmSA_PP6Yr8ls75vYBymFBNyQuart2VZPo1SV_Nl6eKhG-puNy9j23o3xHRHboJpez8765R8vDy_l-ts-7ralMtt5hjFIaOeI5dBKAhgi5xZtEIiUmstp7RCIZ1VFShVUG5C4SV1kgcocm4KUTFkU7I55VbRNHqf6i-TfnQ0tf47xLTTJg21a70WPDe58oJbZzgNxshcclBSoFUS_DHr4ZS1T_H74PtBN_GQurG-plTlyBkKNrr4yeVS7Pvkw_9XBH1Eq89o9SVa9gv_Z2kR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297143153</pqid></control><display><type>article</type><title>GRACC: GRid ACcounting Collector</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas</creator><contributor>Hristov, P. ; Smirnova, O. ; Betev, L. ; Forti, A. ; Litmaath, M.</contributor><creatorcontrib>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas ; Hristov, P. ; Smirnova, O. ; Betev, L. ; Forti, A. ; Litmaath, M.</creatorcontrib><description>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data.
In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201921403032</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Data storage ; Scientific visualization ; Visualization</subject><ispartof>EPJ Web of conferences, 2019, Vol.214, p.3032</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</citedby><cites>FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2297143153?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4022,23929,23930,25139,25752,27922,27923,27924,37011,44589</link.rule.ids></links><search><contributor>Hristov, P.</contributor><contributor>Smirnova, O.</contributor><contributor>Betev, L.</contributor><contributor>Forti, A.</contributor><contributor>Litmaath, M.</contributor><creatorcontrib>Weitzel, Derek</creatorcontrib><creatorcontrib>Bockelman, Brian</creatorcontrib><creatorcontrib>Zvada, Marian</creatorcontrib><creatorcontrib>Retzke, Kevin</creatorcontrib><creatorcontrib>Bhat, Shreyas</creatorcontrib><title>GRACC: GRid ACcounting Collector</title><title>EPJ Web of conferences</title><description>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data.
In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</description><subject>Data storage</subject><subject>Scientific visualization</subject><subject>Visualization</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Aw8Fz7Ez-y9ZbyVoWygIouBt2d3sloSYrZv04Lc3tUU6lzcMjzePHyH3CI8IAhd-37jYhQUFVBQ5MGD0ikwoAmSA_PP6Yr8ls75vYBymFBNyQuart2VZPo1SV_Nl6eKhG-puNy9j23o3xHRHboJpez8765R8vDy_l-ts-7ralMtt5hjFIaOeI5dBKAhgi5xZtEIiUmstp7RCIZ1VFShVUG5C4SV1kgcocm4KUTFkU7I55VbRNHqf6i-TfnQ0tf47xLTTJg21a70WPDe58oJbZzgNxshcclBSoFUS_DHr4ZS1T_H74PtBN_GQurG-plTlyBkKNrr4yeVS7Pvkw_9XBH1Eq89o9SVa9gv_Z2kR</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Weitzel, Derek</creator><creator>Bockelman, Brian</creator><creator>Zvada, Marian</creator><creator>Retzke, Kevin</creator><creator>Bhat, Shreyas</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2019</creationdate><title>GRACC: GRid ACcounting Collector</title><author>Weitzel, Derek ; Bockelman, Brian ; Zvada, Marian ; Retzke, Kevin ; Bhat, Shreyas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data storage</topic><topic>Scientific visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weitzel, Derek</creatorcontrib><creatorcontrib>Bockelman, Brian</creatorcontrib><creatorcontrib>Zvada, Marian</creatorcontrib><creatorcontrib>Retzke, Kevin</creatorcontrib><creatorcontrib>Bhat, Shreyas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EPJ Web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weitzel, Derek</au><au>Bockelman, Brian</au><au>Zvada, Marian</au><au>Retzke, Kevin</au><au>Bhat, Shreyas</au><au>Hristov, P.</au><au>Smirnova, O.</au><au>Betev, L.</au><au>Forti, A.</au><au>Litmaath, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRACC: GRid ACcounting Collector</atitle><jtitle>EPJ Web of conferences</jtitle><date>2019</date><risdate>2019</risdate><volume>214</volume><spage>3032</spage><pages>3032-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>The OSG has long maintained a central accounting system called Gratia. It uses small probes on each computing and storage resource in order to collect resource usage. The probes report to a central collector which stores the usage in a database. The database is then queried to generate reports. As the OSG aged, the size of the database grew very large. It became too large for the database technology to efficiently query to generate detailed reports. The design of a replacement requires data storage that could be queried efficiently to generate multi-year reports. Additionally, it requires flexibilityto add new attributes to the collected data.
In this paper we will describe updates to the GRACC architecture in the last 18 months. GRACC uses modern web technologies that were designed for large data storage, query, and visualization. That includes the open source database Elasticsearch, message broker software RabbitMQ, and Grafana and Kibana as data visualization platforms. It uses multiple agents that perform operations on the data to transform it for easier querying and summarization.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201921403032</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of conferences, 2019, Vol.214, p.3032 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_547a79e54bca42faa676409651b960e1 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access) |
subjects | Data storage Scientific visualization Visualization |
title | GRACC: GRid ACcounting Collector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRACC:%20GRid%20ACcounting%20Collector&rft.jtitle=EPJ%20Web%20of%20conferences&rft.au=Weitzel,%20Derek&rft.date=2019&rft.volume=214&rft.spage=3032&rft.pages=3032-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201921403032&rft_dat=%3Cproquest_doaj_%3E2297143153%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-2e4146f590f0b873b1b56112bbb422d156cb9d099824af8e62c64f0874a85d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2297143153&rft_id=info:pmid/&rfr_iscdi=true |