Loading…
An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes
Automated image-based 3D reconstruction methods are more and more flooding our 3D modeling applications. Fully automated solutions give the impression that from a sample of randomly acquired images we can derive quite impressive visual 3D models. Although the level of automation is reaching very hig...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2016, Vol.8 (3), p.178-178 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693 |
container_end_page | 178 |
container_issue | 3 |
container_start_page | 178 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 8 |
creator | Gaiani, Marco Remondino, Fabio Apollonio, Fabrizio I Ballabeni, Andrea |
description | Automated image-based 3D reconstruction methods are more and more flooding our 3D modeling applications. Fully automated solutions give the impression that from a sample of randomly acquired images we can derive quite impressive visual 3D models. Although the level of automation is reaching very high standards, image quality is a fundamental pre-requisite to produce successful and photo-realistic 3D products, in particular when dealing with large datasets of images. This article presents an efficient pipeline based on color enhancement, image denoising, color-to-gray conversion and image content enrichment. The pipeline stems from an analysis of various state-of-the-art algorithms and aims to adjust the most promising methods, giving solutions to typical failure causes. The assessment evaluation proves how an effective image pre-processing, which considers the entire image dataset, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in the case of poor texture scenarios. |
doi_str_mv | 10.3390/rs8030178 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_548d82ff6ffe47b58e6bdcace2f8387d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_548d82ff6ffe47b58e6bdcace2f8387d</doaj_id><sourcerecordid>1776655924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhk1JoSHJof9A0Et7cKMvy9LRhCZZCHTpx1nI49FGi21tJTmQf19vN4TSS-cyw_DwMvO-VfWe0c9CGHqdsqaCsla_qc45bXktueFnf83vqquc93QtIZih8rw6dDPphic3Aw5km7DepgiYc5h3ZBsOOIYZSYlkMx1SfELSLSVOrhzhx1jiLrlpwpICkG8Icc4lLVDCOpDoSZfgMRSEsiQ3ku-AM-bL6q13Y8arl35R_bz98uPmvn74ere56R5qkIaWWtLeM-ERHeu55yiNZNAqIVA1WvfKuUYMILE34N2AaEByir1QrXRKKCMuqs1Jd4hubw8pTC492-iC_bOIaWddKgFGtI3Ug-beK-9Rtn2jUfUDOEDutdDtsGp9PGmtHvxaMBc7hQw4jm7GuGTLNKVyvYvT_6Ntq1TTGC5X9MM_6D4uaV5NOVKMa96IZqU-nShIMeeE_vUXRu0xdfuauvgNpSigSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771282535</pqid></control><display><type>article</type><title>An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Gaiani, Marco ; Remondino, Fabio ; Apollonio, Fabrizio I ; Ballabeni, Andrea</creator><creatorcontrib>Gaiani, Marco ; Remondino, Fabio ; Apollonio, Fabrizio I ; Ballabeni, Andrea</creatorcontrib><description>Automated image-based 3D reconstruction methods are more and more flooding our 3D modeling applications. Fully automated solutions give the impression that from a sample of randomly acquired images we can derive quite impressive visual 3D models. Although the level of automation is reaching very high standards, image quality is a fundamental pre-requisite to produce successful and photo-realistic 3D products, in particular when dealing with large datasets of images. This article presents an efficient pipeline based on color enhancement, image denoising, color-to-gray conversion and image content enrichment. The pipeline stems from an analysis of various state-of-the-art algorithms and aims to adjust the most promising methods, giving solutions to typical failure causes. The assessment evaluation proves how an effective image pre-processing, which considers the entire image dataset, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in the case of poor texture scenarios.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs8030178</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D reconstruction ; Automation ; denoise ; enhancement ; image matching ; Image quality ; Image reconstruction ; Mathematical models ; photogrammetry ; Pipelines ; pre-processing ; Reconstruction ; Remote sensing ; Texture ; Three dimensional models</subject><ispartof>Remote sensing (Basel, Switzerland), 2016, Vol.8 (3), p.178-178</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693</citedby><cites>FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693</cites><orcidid>0000-0001-5186-1378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771282535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771282535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,25752,27922,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><creatorcontrib>Gaiani, Marco</creatorcontrib><creatorcontrib>Remondino, Fabio</creatorcontrib><creatorcontrib>Apollonio, Fabrizio I</creatorcontrib><creatorcontrib>Ballabeni, Andrea</creatorcontrib><title>An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes</title><title>Remote sensing (Basel, Switzerland)</title><description>Automated image-based 3D reconstruction methods are more and more flooding our 3D modeling applications. Fully automated solutions give the impression that from a sample of randomly acquired images we can derive quite impressive visual 3D models. Although the level of automation is reaching very high standards, image quality is a fundamental pre-requisite to produce successful and photo-realistic 3D products, in particular when dealing with large datasets of images. This article presents an efficient pipeline based on color enhancement, image denoising, color-to-gray conversion and image content enrichment. The pipeline stems from an analysis of various state-of-the-art algorithms and aims to adjust the most promising methods, giving solutions to typical failure causes. The assessment evaluation proves how an effective image pre-processing, which considers the entire image dataset, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in the case of poor texture scenarios.</description><subject>3D reconstruction</subject><subject>Automation</subject><subject>denoise</subject><subject>enhancement</subject><subject>image matching</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>photogrammetry</subject><subject>Pipelines</subject><subject>pre-processing</subject><subject>Reconstruction</subject><subject>Remote sensing</subject><subject>Texture</subject><subject>Three dimensional models</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1r3DAQhk1JoSHJof9A0Et7cKMvy9LRhCZZCHTpx1nI49FGi21tJTmQf19vN4TSS-cyw_DwMvO-VfWe0c9CGHqdsqaCsla_qc45bXktueFnf83vqquc93QtIZih8rw6dDPphic3Aw5km7DepgiYc5h3ZBsOOIYZSYlkMx1SfELSLSVOrhzhx1jiLrlpwpICkG8Icc4lLVDCOpDoSZfgMRSEsiQ3ku-AM-bL6q13Y8arl35R_bz98uPmvn74ere56R5qkIaWWtLeM-ERHeu55yiNZNAqIVA1WvfKuUYMILE34N2AaEByir1QrXRKKCMuqs1Jd4hubw8pTC492-iC_bOIaWddKgFGtI3Ug-beK-9Rtn2jUfUDOEDutdDtsGp9PGmtHvxaMBc7hQw4jm7GuGTLNKVyvYvT_6Ntq1TTGC5X9MM_6D4uaV5NOVKMa96IZqU-nShIMeeE_vUXRu0xdfuauvgNpSigSA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Gaiani, Marco</creator><creator>Remondino, Fabio</creator><creator>Apollonio, Fabrizio I</creator><creator>Ballabeni, Andrea</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5186-1378</orcidid></search><sort><creationdate>2016</creationdate><title>An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes</title><author>Gaiani, Marco ; Remondino, Fabio ; Apollonio, Fabrizio I ; Ballabeni, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D reconstruction</topic><topic>Automation</topic><topic>denoise</topic><topic>enhancement</topic><topic>image matching</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>photogrammetry</topic><topic>Pipelines</topic><topic>pre-processing</topic><topic>Reconstruction</topic><topic>Remote sensing</topic><topic>Texture</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaiani, Marco</creatorcontrib><creatorcontrib>Remondino, Fabio</creatorcontrib><creatorcontrib>Apollonio, Fabrizio I</creatorcontrib><creatorcontrib>Ballabeni, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaiani, Marco</au><au>Remondino, Fabio</au><au>Apollonio, Fabrizio I</au><au>Ballabeni, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2016</date><risdate>2016</risdate><volume>8</volume><issue>3</issue><spage>178</spage><epage>178</epage><pages>178-178</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Automated image-based 3D reconstruction methods are more and more flooding our 3D modeling applications. Fully automated solutions give the impression that from a sample of randomly acquired images we can derive quite impressive visual 3D models. Although the level of automation is reaching very high standards, image quality is a fundamental pre-requisite to produce successful and photo-realistic 3D products, in particular when dealing with large datasets of images. This article presents an efficient pipeline based on color enhancement, image denoising, color-to-gray conversion and image content enrichment. The pipeline stems from an analysis of various state-of-the-art algorithms and aims to adjust the most promising methods, giving solutions to typical failure causes. The assessment evaluation proves how an effective image pre-processing, which considers the entire image dataset, can improve the automated orientation procedure and dense 3D point cloud reconstruction, even in the case of poor texture scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs8030178</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5186-1378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2016, Vol.8 (3), p.178-178 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_548d82ff6ffe47b58e6bdcace2f8387d |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | 3D reconstruction Automation denoise enhancement image matching Image quality Image reconstruction Mathematical models photogrammetry Pipelines pre-processing Reconstruction Remote sensing Texture Three dimensional models |
title | An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Advanced%20Pre-Processing%20Pipeline%20to%20Improve%20Automated%20Photogrammetric%20Reconstructions%20of%20Architectural%20Scenes&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Gaiani,%20Marco&rft.date=2016&rft.volume=8&rft.issue=3&rft.spage=178&rft.epage=178&rft.pages=178-178&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs8030178&rft_dat=%3Cproquest_doaj_%3E1776655924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-40bf13feea1b2f2e4941c7633e6588b6aa53dc4eb9cfadee9c420eb3674a63693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771282535&rft_id=info:pmid/&rfr_iscdi=true |