Loading…

An Indoor Scene Classification Method for Service Robot Based on CNN Feature

Indoor scene classification plays a vital part in environment cognition of service robot. With the development of deep learning, fine-tuning CNN (Convolutional Neural Network) on target datasets has become a popular way to solve classification problems. However, this method cannot obtain satisfying...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotics 2019-01, Vol.2019 (2019), p.1-12
Main Authors: Liu, Shaopeng, Tian, Guohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Indoor scene classification plays a vital part in environment cognition of service robot. With the development of deep learning, fine-tuning CNN (Convolutional Neural Network) on target datasets has become a popular way to solve classification problems. However, this method cannot obtain satisfying indoor scene classification results because of overfitting when scene training datasets are insufficient. To solve this problem, an indoor scene classification method is proposed in this paper, which utilizes CNN feature of scene images to generate scene category features to classify scenes by a novel feature matching algorithm. The novel feature matching algorithm can further improve the speed of scene classification. In addition, overfitting is eliminated by our method even though the training data is limited. The presented method was evaluated on two benchmark scene datasets, Scene 15 dataset and MIT 67 dataset, acquiring 96.49% and 81.69% accuracy, respectively. The experiment results showed that our method was superior to other scene classification methods in terms of accuracy, speed, and robustness. To further evaluate our method, test experiments on unknown scene images from SUN 397 dataset had been done, and the models based on different training datasets obtained 94.34% and 79.80% test accuracy severally, which proved that the proposed method owned good performance in indoor scene classification.
ISSN:1687-9600
1687-9619
DOI:10.1155/2019/8591035