Loading…

Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields

The Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-08, Vol.11 (1), p.16847-16847, Article 16847
Main Authors: Bravo, Claudio, Bozkurt, Deniz, Ross, Andrew N., Quincey, Duncan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.6) and a range of emission scenarios. For the NPI, reductions between 1.5 m w.e. (RCP2.6) and 1.9 m w.e. (RCP8.5) were estimated in the mean SMB during the period 2005–2050 compared to the historical period (1976–2005). For the SPI, the estimated reductions were between 1.1 m w.e. (RCP2.6) and 1.5 m w.e. (RCP8.5). Recently frontal ablation estimates suggest that mean SMB in the SPI is positively biased by 1.5 m w.e., probably due to accumulation overestimation. If it is assumed that frontal ablation rates of the recent past will continue, ice loss and sea-level rise contribution will increase. The trend towards lower SMB is mostly explained by an increase in surface melt. Positive ice loss feedbacks linked to increasing in meltwater availability are expected for calving glaciers.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95725-w