Loading…

Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders

The combination of interactions and static gauge fields plays a pivotal role in our understanding of strongly correlated quantum matter. Cold atomic gases endowed with a synthetic dimension are emerging as an ideal platform to experimentally address this interplay in quasi-one-dimensional systems. A...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2017-06, Vol.7 (2), p.021033, Article 021033
Main Authors: Calvanese Strinati, Marcello, Cornfeld, Eyal, Rossini, Davide, Barbarino, Simone, Dalmonte, Marcello, Fazio, Rosario, Sela, Eran, Mazza, Leonardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The combination of interactions and static gauge fields plays a pivotal role in our understanding of strongly correlated quantum matter. Cold atomic gases endowed with a synthetic dimension are emerging as an ideal platform to experimentally address this interplay in quasi-one-dimensional systems. A fundamental question is whether these setups can give access to pristine two-dimensional phenomena, such as the fractional quantum Hall effect, and how. We show that unambiguous signatures of bosonic and fermionic Laughlin-like states can be observed and characterized in synthetic ladders. We theoretically diagnose these Laughlin-like states focusing on the chiral current flowing in the ladder, on the central charge of the low-energy theory, and on the properties of the entanglement entropy. Remarkably, Laughlin-like states are separated from conventional liquids by Lifschitz-type transitions, characterized by sharp discontinuities in the current profiles, which we address using extensive simulations based on matrix-product states. Our work provides a qualitative and quantitative guideline towards the observability and understanding of strongly correlated states of matter in synthetic ladders. In particular, we unveil how state-of-the-art experimental settings constitute an ideal starting point to progressively tackle two-dimensional strongly interacting systems from a ladder viewpoint, opening a new perspective for the observation of non-Abelian states of matter.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.7.021033