Loading…

Drone-Based Environmental Emergency Response in the Brazilian Amazon

This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited....

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2023-08, Vol.7 (9), p.554
Main Authors: Custodio, Janiele, Abeledo, Hernan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333
container_end_page
container_issue 9
container_start_page 554
container_title Drones (Basel)
container_volume 7
creator Custodio, Janiele
Abeledo, Hernan
description This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.
doi_str_mv 10.3390/drones7090554
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54d98e90f53a45a59a821127940bb565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771806426</galeid><doaj_id>oai_doaj_org_article_54d98e90f53a45a59a821127940bb565</doaj_id><sourcerecordid>A771806426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUnv0vuB5az43m2NbqxYKgih4C5NstqZ0k5qsQv31rq34ATKHmXm895iPLDvHaEypRJd1DN4mgSTinB1lA8IRKxgrn45_1afZKKU1QogQxkuJB9nV1aeumEKydT73b65vW-s72OTz1saV9WaX39u0DT7Z3Pm8e7b5NMK72zjw-aSF9-DPspMGNsmOvvIwe7yeP8xui-XdzWI2WRaGStoVupbASuDUUGpQrQ3jQlYak0oCYpriSmjRNIIIjK3FQEpjJBVUaNPoXkOH2eLgWwdYq210LcSdCuDUHghxpSB2zmys4qyWlZWo4RQYBy6hIhgTIRnSmpe897o4eG1jeHm1qVPr8Bp9P74iVSkpRpyUP6wV9KbON6GLYFqXjJoIgStUsj1r_A-rj9q2zvT3bVyP_xEUB4GJIaVom-9lMFKf71R_3kk_AOXukHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869310526</pqid></control><display><type>article</type><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><source>Publicly Available Content Database</source><creator>Custodio, Janiele ; Abeledo, Hernan</creator><creatorcontrib>Custodio, Janiele ; Abeledo, Hernan</creatorcontrib><description>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones7090554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amazon rainforest ; Amazon River region ; Assistance in emergencies ; Biodiversity ; Case studies ; Climate change ; Deforestation ; Drone aircraft ; Drones ; Emergency communications systems ; Emergency response ; Emission standards ; environmental emergency response ; Environmental policy ; facility location–allocation problem ; Forest &amp; brush fires ; Forest fires ; Land degradation ; Optimization ; Paris Agreement ; Rainforests ; Remote sensing ; Satellite imagery ; Satellites ; Sensors ; Surveillance ; Technology application ; wildfires</subject><ispartof>Drones (Basel), 2023-08, Vol.7 (9), p.554</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</cites><orcidid>0000-0001-6674-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869310526/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869310526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Custodio, Janiele</creatorcontrib><creatorcontrib>Abeledo, Hernan</creatorcontrib><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><title>Drones (Basel)</title><description>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</description><subject>Amazon rainforest</subject><subject>Amazon River region</subject><subject>Assistance in emergencies</subject><subject>Biodiversity</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Deforestation</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Emergency communications systems</subject><subject>Emergency response</subject><subject>Emission standards</subject><subject>environmental emergency response</subject><subject>Environmental policy</subject><subject>facility location–allocation problem</subject><subject>Forest &amp; brush fires</subject><subject>Forest fires</subject><subject>Land degradation</subject><subject>Optimization</subject><subject>Paris Agreement</subject><subject>Rainforests</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Technology application</subject><subject>wildfires</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQXUTBUnv0vuB5az43m2NbqxYKgih4C5NstqZ0k5qsQv31rq34ATKHmXm895iPLDvHaEypRJd1DN4mgSTinB1lA8IRKxgrn45_1afZKKU1QogQxkuJB9nV1aeumEKydT73b65vW-s72OTz1saV9WaX39u0DT7Z3Pm8e7b5NMK72zjw-aSF9-DPspMGNsmOvvIwe7yeP8xui-XdzWI2WRaGStoVupbASuDUUGpQrQ3jQlYak0oCYpriSmjRNIIIjK3FQEpjJBVUaNPoXkOH2eLgWwdYq210LcSdCuDUHghxpSB2zmys4qyWlZWo4RQYBy6hIhgTIRnSmpe897o4eG1jeHm1qVPr8Bp9P74iVSkpRpyUP6wV9KbON6GLYFqXjJoIgStUsj1r_A-rj9q2zvT3bVyP_xEUB4GJIaVom-9lMFKf71R_3kk_AOXukHA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Custodio, Janiele</creator><creator>Abeledo, Hernan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6674-4609</orcidid></search><sort><creationdate>20230801</creationdate><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><author>Custodio, Janiele ; Abeledo, Hernan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amazon rainforest</topic><topic>Amazon River region</topic><topic>Assistance in emergencies</topic><topic>Biodiversity</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Deforestation</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Emergency communications systems</topic><topic>Emergency response</topic><topic>Emission standards</topic><topic>environmental emergency response</topic><topic>Environmental policy</topic><topic>facility location–allocation problem</topic><topic>Forest &amp; brush fires</topic><topic>Forest fires</topic><topic>Land degradation</topic><topic>Optimization</topic><topic>Paris Agreement</topic><topic>Rainforests</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Technology application</topic><topic>wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Custodio, Janiele</creatorcontrib><creatorcontrib>Abeledo, Hernan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Custodio, Janiele</au><au>Abeledo, Hernan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone-Based Environmental Emergency Response in the Brazilian Amazon</atitle><jtitle>Drones (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>7</volume><issue>9</issue><spage>554</spage><pages>554-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones7090554</doi><orcidid>https://orcid.org/0000-0001-6674-4609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-446X
ispartof Drones (Basel), 2023-08, Vol.7 (9), p.554
issn 2504-446X
2504-446X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_54d98e90f53a45a59a821127940bb565
source Publicly Available Content Database
subjects Amazon rainforest
Amazon River region
Assistance in emergencies
Biodiversity
Case studies
Climate change
Deforestation
Drone aircraft
Drones
Emergency communications systems
Emergency response
Emission standards
environmental emergency response
Environmental policy
facility location–allocation problem
Forest & brush fires
Forest fires
Land degradation
Optimization
Paris Agreement
Rainforests
Remote sensing
Satellite imagery
Satellites
Sensors
Surveillance
Technology application
wildfires
title Drone-Based Environmental Emergency Response in the Brazilian Amazon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone-Based%20Environmental%20Emergency%20Response%20in%20the%20Brazilian%20Amazon&rft.jtitle=Drones%20(Basel)&rft.au=Custodio,%20Janiele&rft.date=2023-08-01&rft.volume=7&rft.issue=9&rft.spage=554&rft.pages=554-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones7090554&rft_dat=%3Cgale_doaj_%3EA771806426%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869310526&rft_id=info:pmid/&rft_galeid=A771806426&rfr_iscdi=true