Loading…
Drone-Based Environmental Emergency Response in the Brazilian Amazon
This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited....
Saved in:
Published in: | Drones (Basel) 2023-08, Vol.7 (9), p.554 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333 |
container_end_page | |
container_issue | 9 |
container_start_page | 554 |
container_title | Drones (Basel) |
container_volume | 7 |
creator | Custodio, Janiele Abeledo, Hernan |
description | This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions. |
doi_str_mv | 10.3390/drones7090554 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54d98e90f53a45a59a821127940bb565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771806426</galeid><doaj_id>oai_doaj_org_article_54d98e90f53a45a59a821127940bb565</doaj_id><sourcerecordid>A771806426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUnv0vuB5az43m2NbqxYKgih4C5NstqZ0k5qsQv31rq34ATKHmXm895iPLDvHaEypRJd1DN4mgSTinB1lA8IRKxgrn45_1afZKKU1QogQxkuJB9nV1aeumEKydT73b65vW-s72OTz1saV9WaX39u0DT7Z3Pm8e7b5NMK72zjw-aSF9-DPspMGNsmOvvIwe7yeP8xui-XdzWI2WRaGStoVupbASuDUUGpQrQ3jQlYak0oCYpriSmjRNIIIjK3FQEpjJBVUaNPoXkOH2eLgWwdYq210LcSdCuDUHghxpSB2zmys4qyWlZWo4RQYBy6hIhgTIRnSmpe897o4eG1jeHm1qVPr8Bp9P74iVSkpRpyUP6wV9KbON6GLYFqXjJoIgStUsj1r_A-rj9q2zvT3bVyP_xEUB4GJIaVom-9lMFKf71R_3kk_AOXukHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869310526</pqid></control><display><type>article</type><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><source>Publicly Available Content Database</source><creator>Custodio, Janiele ; Abeledo, Hernan</creator><creatorcontrib>Custodio, Janiele ; Abeledo, Hernan</creatorcontrib><description>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones7090554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amazon rainforest ; Amazon River region ; Assistance in emergencies ; Biodiversity ; Case studies ; Climate change ; Deforestation ; Drone aircraft ; Drones ; Emergency communications systems ; Emergency response ; Emission standards ; environmental emergency response ; Environmental policy ; facility location–allocation problem ; Forest & brush fires ; Forest fires ; Land degradation ; Optimization ; Paris Agreement ; Rainforests ; Remote sensing ; Satellite imagery ; Satellites ; Sensors ; Surveillance ; Technology application ; wildfires</subject><ispartof>Drones (Basel), 2023-08, Vol.7 (9), p.554</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</cites><orcidid>0000-0001-6674-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869310526/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869310526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Custodio, Janiele</creatorcontrib><creatorcontrib>Abeledo, Hernan</creatorcontrib><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><title>Drones (Basel)</title><description>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</description><subject>Amazon rainforest</subject><subject>Amazon River region</subject><subject>Assistance in emergencies</subject><subject>Biodiversity</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Deforestation</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Emergency communications systems</subject><subject>Emergency response</subject><subject>Emission standards</subject><subject>environmental emergency response</subject><subject>Environmental policy</subject><subject>facility location–allocation problem</subject><subject>Forest & brush fires</subject><subject>Forest fires</subject><subject>Land degradation</subject><subject>Optimization</subject><subject>Paris Agreement</subject><subject>Rainforests</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Technology application</subject><subject>wildfires</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQXUTBUnv0vuB5az43m2NbqxYKgih4C5NstqZ0k5qsQv31rq34ATKHmXm895iPLDvHaEypRJd1DN4mgSTinB1lA8IRKxgrn45_1afZKKU1QogQxkuJB9nV1aeumEKydT73b65vW-s72OTz1saV9WaX39u0DT7Z3Pm8e7b5NMK72zjw-aSF9-DPspMGNsmOvvIwe7yeP8xui-XdzWI2WRaGStoVupbASuDUUGpQrQ3jQlYak0oCYpriSmjRNIIIjK3FQEpjJBVUaNPoXkOH2eLgWwdYq210LcSdCuDUHghxpSB2zmys4qyWlZWo4RQYBy6hIhgTIRnSmpe897o4eG1jeHm1qVPr8Bp9P74iVSkpRpyUP6wV9KbON6GLYFqXjJoIgStUsj1r_A-rj9q2zvT3bVyP_xEUB4GJIaVom-9lMFKf71R_3kk_AOXukHA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Custodio, Janiele</creator><creator>Abeledo, Hernan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6674-4609</orcidid></search><sort><creationdate>20230801</creationdate><title>Drone-Based Environmental Emergency Response in the Brazilian Amazon</title><author>Custodio, Janiele ; Abeledo, Hernan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amazon rainforest</topic><topic>Amazon River region</topic><topic>Assistance in emergencies</topic><topic>Biodiversity</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Deforestation</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Emergency communications systems</topic><topic>Emergency response</topic><topic>Emission standards</topic><topic>environmental emergency response</topic><topic>Environmental policy</topic><topic>facility location–allocation problem</topic><topic>Forest & brush fires</topic><topic>Forest fires</topic><topic>Land degradation</topic><topic>Optimization</topic><topic>Paris Agreement</topic><topic>Rainforests</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Technology application</topic><topic>wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Custodio, Janiele</creatorcontrib><creatorcontrib>Abeledo, Hernan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Custodio, Janiele</au><au>Abeledo, Hernan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone-Based Environmental Emergency Response in the Brazilian Amazon</atitle><jtitle>Drones (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>7</volume><issue>9</issue><spage>554</spage><pages>554-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>This paper introduces a location–allocation model to support environmental emergency response strategic planning using a drone-based network. Drones are used to verify potential emergencies, gathering additional information to support emergency response missions when time and resources are limited. The resulting discrete facility location–allocation model with mobile servers assumes a centralized network operated out of sight by first responders and government agents. The optimization problem seeks to find the minimal cost configuration that meets operational constraints and performance objectives. To test the practical applicability of the proposed model, a real-life case study was implemented for the municipality of Ji-Paraná, in the Brazilian Amazon, using demand data from a mobile whistle-blower application and from satellite imagery projects that monitor deforestation and fire incidents in the region. Experiments are performed to understand the model’s sensitivity to various demand scenarios and capacity restrictions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones7090554</doi><orcidid>https://orcid.org/0000-0001-6674-4609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-446X |
ispartof | Drones (Basel), 2023-08, Vol.7 (9), p.554 |
issn | 2504-446X 2504-446X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_54d98e90f53a45a59a821127940bb565 |
source | Publicly Available Content Database |
subjects | Amazon rainforest Amazon River region Assistance in emergencies Biodiversity Case studies Climate change Deforestation Drone aircraft Drones Emergency communications systems Emergency response Emission standards environmental emergency response Environmental policy facility location–allocation problem Forest & brush fires Forest fires Land degradation Optimization Paris Agreement Rainforests Remote sensing Satellite imagery Satellites Sensors Surveillance Technology application wildfires |
title | Drone-Based Environmental Emergency Response in the Brazilian Amazon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone-Based%20Environmental%20Emergency%20Response%20in%20the%20Brazilian%20Amazon&rft.jtitle=Drones%20(Basel)&rft.au=Custodio,%20Janiele&rft.date=2023-08-01&rft.volume=7&rft.issue=9&rft.spage=554&rft.pages=554-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones7090554&rft_dat=%3Cgale_doaj_%3EA771806426%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-bd9a46a53c33c0dbc45798b1289a04b3187b7ff72711ee1a26cc93737bcfbc333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869310526&rft_id=info:pmid/&rft_galeid=A771806426&rfr_iscdi=true |