Loading…
Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors
Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail...
Saved in:
Published in: | ITM web of conferences 2023, Vol.56, p.5018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3 |
container_end_page | |
container_issue | |
container_start_page | 5018 |
container_title | ITM web of conferences |
container_volume | 56 |
creator | Haroon, A. Syed Padma, T. |
description | Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors. |
doi_str_mv | 10.1051/itmconf/20235605018 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7</doaj_id><sourcerecordid>2859601625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXERBqf0FXgKe1ybZJJscpX4VRA-1eAzZ5EW3bjc12VX898ZWxNM85g3z5jFFcUbwBcGczNphY0PvZxTTigvMMZEHxQmlNSkpVvXhv_m4mKa0xhgTLgWh4qSwl-PQpg1absEOcdygqzaF6CCiKxgy1YYerVLbv6Dr_tX0Fhyah_4jdOPPynToAca4g-EzxDdkeoeewUTTdICW0GezdFocedMlmP7ipFjdXD_N78r7x9vF_PK-tERWsuTSyMZKR2vsZcUUYTwn9VwpyxgAYYKrRlAQtKZU0Cy3GYXiFIOS3FSTYrH3dcGs9Ta2GxO_dDCt3hEhvmgTh9Z2oDlzjceOC6COecIa6QXxtXGcKeNsnb3O917bGN5HSINehzHmh5OmkiuBSU6QVdVeZWNIKYL_u0qw_ilH_5aj_5VTfQNFPIMB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859601625</pqid></control><display><type>article</type><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><source>Publicly Available Content Database</source><creator>Haroon, A. Syed ; Padma, T.</creator><contributor>Ghazali, N.H. ; Yuvaraj, N. ; Sumathi, A.C.</contributor><creatorcontrib>Haroon, A. Syed ; Padma, T. ; Ghazali, N.H. ; Yuvaraj, N. ; Sumathi, A.C.</creatorcontrib><description>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20235605018</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Accelerometers ; and whale optimization ; Artificial neural networks ; Autism ; autism spectrum disorders ; convolutional neural network ; multi-sensor ; Optimization ; stereotypical motor movements</subject><ispartof>ITM web of conferences, 2023, Vol.56, p.5018</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2859601625?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Ghazali, N.H.</contributor><contributor>Yuvaraj, N.</contributor><contributor>Sumathi, A.C.</contributor><creatorcontrib>Haroon, A. Syed</creatorcontrib><creatorcontrib>Padma, T.</creatorcontrib><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><title>ITM web of conferences</title><description>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</description><subject>Accelerometers</subject><subject>and whale optimization</subject><subject>Artificial neural networks</subject><subject>Autism</subject><subject>autism spectrum disorders</subject><subject>convolutional neural network</subject><subject>multi-sensor</subject><subject>Optimization</subject><subject>stereotypical motor movements</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXERBqf0FXgKe1ybZJJscpX4VRA-1eAzZ5EW3bjc12VX898ZWxNM85g3z5jFFcUbwBcGczNphY0PvZxTTigvMMZEHxQmlNSkpVvXhv_m4mKa0xhgTLgWh4qSwl-PQpg1absEOcdygqzaF6CCiKxgy1YYerVLbv6Dr_tX0Fhyah_4jdOPPynToAca4g-EzxDdkeoeewUTTdICW0GezdFocedMlmP7ipFjdXD_N78r7x9vF_PK-tERWsuTSyMZKR2vsZcUUYTwn9VwpyxgAYYKrRlAQtKZU0Cy3GYXiFIOS3FSTYrH3dcGs9Ta2GxO_dDCt3hEhvmgTh9Z2oDlzjceOC6COecIa6QXxtXGcKeNsnb3O917bGN5HSINehzHmh5OmkiuBSU6QVdVeZWNIKYL_u0qw_ilH_5aj_5VTfQNFPIMB</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Haroon, A. Syed</creator><creator>Padma, T.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2023</creationdate><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><author>Haroon, A. Syed ; Padma, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>and whale optimization</topic><topic>Artificial neural networks</topic><topic>Autism</topic><topic>autism spectrum disorders</topic><topic>convolutional neural network</topic><topic>multi-sensor</topic><topic>Optimization</topic><topic>stereotypical motor movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haroon, A. Syed</creatorcontrib><creatorcontrib>Padma, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haroon, A. Syed</au><au>Padma, T.</au><au>Ghazali, N.H.</au><au>Yuvaraj, N.</au><au>Sumathi, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</atitle><jtitle>ITM web of conferences</jtitle><date>2023</date><risdate>2023</risdate><volume>56</volume><spage>5018</spage><pages>5018-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20235605018</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2271-2097 |
ispartof | ITM web of conferences, 2023, Vol.56, p.5018 |
issn | 2271-2097 2431-7578 2271-2097 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7 |
source | Publicly Available Content Database |
subjects | Accelerometers and whale optimization Artificial neural networks Autism autism spectrum disorders convolutional neural network multi-sensor Optimization stereotypical motor movements |
title | Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autism%20Spectrum%20Disorder%20Detection%20Using%20Enhanced%20Convolutional%20Neural%20Network%20and%20Wearable%20Sensors&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Haroon,%20A.%20Syed&rft.date=2023&rft.volume=56&rft.spage=5018&rft.pages=5018-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20235605018&rft_dat=%3Cproquest_doaj_%3E2859601625%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859601625&rft_id=info:pmid/&rfr_iscdi=true |