Loading…

Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors

Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail...

Full description

Saved in:
Bibliographic Details
Published in:ITM web of conferences 2023, Vol.56, p.5018
Main Authors: Haroon, A. Syed, Padma, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3
container_end_page
container_issue
container_start_page 5018
container_title ITM web of conferences
container_volume 56
creator Haroon, A. Syed
Padma, T.
description Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.
doi_str_mv 10.1051/itmconf/20235605018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7</doaj_id><sourcerecordid>2859601625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXERBqf0FXgKe1ybZJJscpX4VRA-1eAzZ5EW3bjc12VX898ZWxNM85g3z5jFFcUbwBcGczNphY0PvZxTTigvMMZEHxQmlNSkpVvXhv_m4mKa0xhgTLgWh4qSwl-PQpg1absEOcdygqzaF6CCiKxgy1YYerVLbv6Dr_tX0Fhyah_4jdOPPynToAca4g-EzxDdkeoeewUTTdICW0GezdFocedMlmP7ipFjdXD_N78r7x9vF_PK-tERWsuTSyMZKR2vsZcUUYTwn9VwpyxgAYYKrRlAQtKZU0Cy3GYXiFIOS3FSTYrH3dcGs9Ta2GxO_dDCt3hEhvmgTh9Z2oDlzjceOC6COecIa6QXxtXGcKeNsnb3O917bGN5HSINehzHmh5OmkiuBSU6QVdVeZWNIKYL_u0qw_ilH_5aj_5VTfQNFPIMB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859601625</pqid></control><display><type>article</type><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><source>Publicly Available Content Database</source><creator>Haroon, A. Syed ; Padma, T.</creator><contributor>Ghazali, N.H. ; Yuvaraj, N. ; Sumathi, A.C.</contributor><creatorcontrib>Haroon, A. Syed ; Padma, T. ; Ghazali, N.H. ; Yuvaraj, N. ; Sumathi, A.C.</creatorcontrib><description>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20235605018</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Accelerometers ; and whale optimization ; Artificial neural networks ; Autism ; autism spectrum disorders ; convolutional neural network ; multi-sensor ; Optimization ; stereotypical motor movements</subject><ispartof>ITM web of conferences, 2023, Vol.56, p.5018</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2859601625?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Ghazali, N.H.</contributor><contributor>Yuvaraj, N.</contributor><contributor>Sumathi, A.C.</contributor><creatorcontrib>Haroon, A. Syed</creatorcontrib><creatorcontrib>Padma, T.</creatorcontrib><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><title>ITM web of conferences</title><description>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</description><subject>Accelerometers</subject><subject>and whale optimization</subject><subject>Artificial neural networks</subject><subject>Autism</subject><subject>autism spectrum disorders</subject><subject>convolutional neural network</subject><subject>multi-sensor</subject><subject>Optimization</subject><subject>stereotypical motor movements</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXERBqf0FXgKe1ybZJJscpX4VRA-1eAzZ5EW3bjc12VX898ZWxNM85g3z5jFFcUbwBcGczNphY0PvZxTTigvMMZEHxQmlNSkpVvXhv_m4mKa0xhgTLgWh4qSwl-PQpg1absEOcdygqzaF6CCiKxgy1YYerVLbv6Dr_tX0Fhyah_4jdOPPynToAca4g-EzxDdkeoeewUTTdICW0GezdFocedMlmP7ipFjdXD_N78r7x9vF_PK-tERWsuTSyMZKR2vsZcUUYTwn9VwpyxgAYYKrRlAQtKZU0Cy3GYXiFIOS3FSTYrH3dcGs9Ta2GxO_dDCt3hEhvmgTh9Z2oDlzjceOC6COecIa6QXxtXGcKeNsnb3O917bGN5HSINehzHmh5OmkiuBSU6QVdVeZWNIKYL_u0qw_ilH_5aj_5VTfQNFPIMB</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Haroon, A. Syed</creator><creator>Padma, T.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2023</creationdate><title>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</title><author>Haroon, A. Syed ; Padma, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>and whale optimization</topic><topic>Artificial neural networks</topic><topic>Autism</topic><topic>autism spectrum disorders</topic><topic>convolutional neural network</topic><topic>multi-sensor</topic><topic>Optimization</topic><topic>stereotypical motor movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haroon, A. Syed</creatorcontrib><creatorcontrib>Padma, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haroon, A. Syed</au><au>Padma, T.</au><au>Ghazali, N.H.</au><au>Yuvaraj, N.</au><au>Sumathi, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors</atitle><jtitle>ITM web of conferences</jtitle><date>2023</date><risdate>2023</risdate><volume>56</volume><spage>5018</spage><pages>5018-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>Stereotypical Motor Movements (SMMs) may seriously impede learning and social relationships are one of the distinctive and typical postural or motor behaviours linked with autism spectrum disorders (ASDs). A reliable infrastructure for automatic and quick SMM detection is provided by wireless retail sensor technology, which would facilitate targeted intervention and perhaps provide early warning of meltdown occurrences. However, because of significant inter- and intra-subject variability that is challenging for handmade features to handle, the detection and quantification of SMM patterns remain challenging. In this work, we suggest using the Enhanced Convolutional Neural Network (ECNN) to extract distinguishing characteristics directly from multi-sensor accelerometer inputs. Parameters of the ECNN are tuned using whale optimization. Results with Enhanced convolutional neural networks produce accurate and robust SMM detectors.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20235605018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2271-2097
ispartof ITM web of conferences, 2023, Vol.56, p.5018
issn 2271-2097
2431-7578
2271-2097
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_54dbf0d56e2d4f14b8f61f7ad549adc7
source Publicly Available Content Database
subjects Accelerometers
and whale optimization
Artificial neural networks
Autism
autism spectrum disorders
convolutional neural network
multi-sensor
Optimization
stereotypical motor movements
title Autism Spectrum Disorder Detection Using Enhanced Convolutional Neural Network and Wearable Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autism%20Spectrum%20Disorder%20Detection%20Using%20Enhanced%20Convolutional%20Neural%20Network%20and%20Wearable%20Sensors&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Haroon,%20A.%20Syed&rft.date=2023&rft.volume=56&rft.spage=5018&rft.pages=5018-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20235605018&rft_dat=%3Cproquest_doaj_%3E2859601625%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1838-58a8bc8d270f8349145000f599c44ee14659b62e627226258ac22669520e985a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859601625&rft_id=info:pmid/&rfr_iscdi=true