Loading…
Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics
This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to an...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.24 (1), p.129 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-8d4926a76fb7bfe79c67fab55718a516f0670948502598fbb574eb2ee260b7013 |
container_end_page | |
container_issue | 1 |
container_start_page | 129 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Rodríguez-Cobo, Luís Reyes-Gonzalez, Luís Algorri, José Francisco Díez-Del-Valle Garzón, Sara García-García, Roberto López-Higuera, José Miguel Cobo, Adolfo |
description | This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system's effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection. |
doi_str_mv | 10.3390/s24010129 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54f1f4e2808d4195b94cc11a0fc36187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779351237</galeid><doaj_id>oai_doaj_org_article_54f1f4e2808d4195b94cc11a0fc36187</doaj_id><sourcerecordid>A779351237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8d4926a76fb7bfe79c67fab55718a516f0670948502598fbb574eb2ee260b7013</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoh9w4A-gSFzKIcVfie0TWi0trFQBEuVsOc4461ViF9sL4t_jsGXVIh9sjV8_M-94quoVRpeUSvQuEYYwwkQ-qU4xI6wRhKCnD84n1VlKO4QIpVQ8r06oIIhIKU6r6XPwzTr4rE2ub7cQZz3V2g_1yoR9ys7U38CnEFP9y-VtfTX3MAxQrmN21hlX1BufYZrcCN5AbUOsvwbncxNss9YR6g9Ojz4sqPSiemb1lODl_X5efb--ul1_am6-fNysVzeNYZ3MjRiYJJ3mne15b4FL03Gr-7blWOgWdxZ1HEkmWkRaKWzft5xBTwBIh3qOMD2vNgfuEPRO3UU36_hbBe3U30CIo9KlfjOBapnFlgERqGTFsu0lMwZjjayhHRa8sN4fWHf7fobBgM9RT4-gj2-826ox_FQYcYEpl4VwcU-I4cceUlazS6a0THsoPVZEYspY-RFUpG_-k-7CPvrSq0VFuOxavNi7PKhGXRw4b0NJbMoaYHYmeLCuxFe85G4xoYuHt4cHJoaUIthj-RipZYLUcYKK9vVDv0flv5GhfwA_5L8-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912796511</pqid></control><display><type>article</type><title>Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Rodríguez-Cobo, Luís ; Reyes-Gonzalez, Luís ; Algorri, José Francisco ; Díez-Del-Valle Garzón, Sara ; García-García, Roberto ; López-Higuera, José Miguel ; Cobo, Adolfo</creator><creatorcontrib>Rodríguez-Cobo, Luís ; Reyes-Gonzalez, Luís ; Algorri, José Francisco ; Díez-Del-Valle Garzón, Sara ; García-García, Roberto ; López-Higuera, José Miguel ; Cobo, Adolfo</creatorcontrib><description>This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system's effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24010129</identifier><identifier>PMID: 38202998</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acoustic ; Analysis ; Artificial intelligence ; Computational linguistics ; COVID-19 ; Language processing ; low-cost hardware ; Natural language interfaces ; Neural networks ; remote ; Sensors ; Technology application ; thermal</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.129</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-8d4926a76fb7bfe79c67fab55718a516f0670948502598fbb574eb2ee260b7013</cites><orcidid>0000-0002-2068-2956 ; 0000-0003-1498-9238 ; 0000-0002-2654-583X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912796511/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912796511?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38202998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Cobo, Luís</creatorcontrib><creatorcontrib>Reyes-Gonzalez, Luís</creatorcontrib><creatorcontrib>Algorri, José Francisco</creatorcontrib><creatorcontrib>Díez-Del-Valle Garzón, Sara</creatorcontrib><creatorcontrib>García-García, Roberto</creatorcontrib><creatorcontrib>López-Higuera, José Miguel</creatorcontrib><creatorcontrib>Cobo, Adolfo</creatorcontrib><title>Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system's effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.</description><subject>acoustic</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>COVID-19</subject><subject>Language processing</subject><subject>low-cost hardware</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>remote</subject><subject>Sensors</subject><subject>Technology application</subject><subject>thermal</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoh9w4A-gSFzKIcVfie0TWi0trFQBEuVsOc4461ViF9sL4t_jsGXVIh9sjV8_M-94quoVRpeUSvQuEYYwwkQ-qU4xI6wRhKCnD84n1VlKO4QIpVQ8r06oIIhIKU6r6XPwzTr4rE2ub7cQZz3V2g_1yoR9ys7U38CnEFP9y-VtfTX3MAxQrmN21hlX1BufYZrcCN5AbUOsvwbncxNss9YR6g9Ojz4sqPSiemb1lODl_X5efb--ul1_am6-fNysVzeNYZ3MjRiYJJ3mne15b4FL03Gr-7blWOgWdxZ1HEkmWkRaKWzft5xBTwBIh3qOMD2vNgfuEPRO3UU36_hbBe3U30CIo9KlfjOBapnFlgERqGTFsu0lMwZjjayhHRa8sN4fWHf7fobBgM9RT4-gj2-826ox_FQYcYEpl4VwcU-I4cceUlazS6a0THsoPVZEYspY-RFUpG_-k-7CPvrSq0VFuOxavNi7PKhGXRw4b0NJbMoaYHYmeLCuxFe85G4xoYuHt4cHJoaUIthj-RipZYLUcYKK9vVDv0flv5GhfwA_5L8-</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Rodríguez-Cobo, Luís</creator><creator>Reyes-Gonzalez, Luís</creator><creator>Algorri, José Francisco</creator><creator>Díez-Del-Valle Garzón, Sara</creator><creator>García-García, Roberto</creator><creator>López-Higuera, José Miguel</creator><creator>Cobo, Adolfo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2068-2956</orcidid><orcidid>https://orcid.org/0000-0003-1498-9238</orcidid><orcidid>https://orcid.org/0000-0002-2654-583X</orcidid></search><sort><creationdate>20231226</creationdate><title>Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics</title><author>Rodríguez-Cobo, Luís ; Reyes-Gonzalez, Luís ; Algorri, José Francisco ; Díez-Del-Valle Garzón, Sara ; García-García, Roberto ; López-Higuera, José Miguel ; Cobo, Adolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8d4926a76fb7bfe79c67fab55718a516f0670948502598fbb574eb2ee260b7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acoustic</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>COVID-19</topic><topic>Language processing</topic><topic>low-cost hardware</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>remote</topic><topic>Sensors</topic><topic>Technology application</topic><topic>thermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Cobo, Luís</creatorcontrib><creatorcontrib>Reyes-Gonzalez, Luís</creatorcontrib><creatorcontrib>Algorri, José Francisco</creatorcontrib><creatorcontrib>Díez-Del-Valle Garzón, Sara</creatorcontrib><creatorcontrib>García-García, Roberto</creatorcontrib><creatorcontrib>López-Higuera, José Miguel</creatorcontrib><creatorcontrib>Cobo, Adolfo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Cobo, Luís</au><au>Reyes-Gonzalez, Luís</au><au>Algorri, José Francisco</au><au>Díez-Del-Valle Garzón, Sara</au><au>García-García, Roberto</au><au>López-Higuera, José Miguel</au><au>Cobo, Adolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-26</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>129</spage><pages>129-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system's effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38202998</pmid><doi>10.3390/s24010129</doi><orcidid>https://orcid.org/0000-0002-2068-2956</orcidid><orcidid>https://orcid.org/0000-0003-1498-9238</orcidid><orcidid>https://orcid.org/0000-0002-2654-583X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.129 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_54f1f4e2808d4195b94cc11a0fc36187 |
source | Publicly Available Content Database; PubMed Central |
subjects | acoustic Analysis Artificial intelligence Computational linguistics COVID-19 Language processing low-cost hardware Natural language interfaces Neural networks remote Sensors Technology application thermal |
title | Non-Contact Thermal and Acoustic Sensors with Embedded Artificial Intelligence for Point-of-Care Diagnostics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Contact%20Thermal%20and%20Acoustic%20Sensors%20with%20Embedded%20Artificial%20Intelligence%20for%20Point-of-Care%20Diagnostics&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Rodr%C3%ADguez-Cobo,%20Lu%C3%ADs&rft.date=2023-12-26&rft.volume=24&rft.issue=1&rft.spage=129&rft.pages=129-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24010129&rft_dat=%3Cgale_doaj_%3EA779351237%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-8d4926a76fb7bfe79c67fab55718a516f0670948502598fbb574eb2ee260b7013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912796511&rft_id=info:pmid/38202998&rft_galeid=A779351237&rfr_iscdi=true |