Loading…
Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
The Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions. We collected data from 43 participants who watched short film clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust,...
Saved in:
Published in: | Scientific data 2022-04, Vol.9 (1), p.158-158, Article 158 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3 |
container_end_page | 158 |
container_issue | 1 |
container_start_page | 158 |
container_title | Scientific data |
container_volume | 9 |
creator | Saganowski, Stanisław Komoszyńska, Joanna Behnke, Maciej Perz, Bartosz Kunc, Dominika Klich, Bartłomiej Kaczmarek, Łukasz D. Kazienko, Przemysław |
description | The Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions. We collected data from 43 participants who watched short film clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear, and sadness. Three wearables were used to record physiological data: EEG, BVP (2x), HR, EDA, SKT, ACC (3x), and GYRO (2x); in parallel with the upper-body videos. After each film clip, participants completed two types of self-reports: (1) related to nine discrete emotions and (2) three affective dimensions: valence, arousal, and motivation. The obtained data facilitates various ER approaches, e.g., multimodal ER, EEG- vs. cardiovascular-based ER, discrete to dimensional representation transitions. The technical validation indicated that watching film clips elicited the targeted emotions. It also supported signals’ high quality.
Measurement(s)
cardiac output measurement • Electroencephalography • Galvanic Skin Response • Temperature • acceleration • facial expressions
Technology Type(s)
photoplethysmogram • electroencephalogram (5 electrodes) • electrodermal activity measurement • Sensor • Accelerometer • Video Recording
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
laboratory environment |
doi_str_mv | 10.1038/s41597-022-01262-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_54f44d7f0446415a95e05de1f1acf332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_54f44d7f0446415a95e05de1f1acf332</doaj_id><sourcerecordid>2648897310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwIOU6thObBRKqCq1UiQ2sLU98nfEoiYOdtMzb40zK0LJg4597jj_bVyfLXhO4IEDFh8gIl3UBZVkAKas0PstOS-BlwVhFnz9an2TnMe4AgFAGvIaX2QnlVFJG2WnWX_W-Hdzk_JAbPemI08cce38oBGyO4r2btnnEzhYBRx-m-D63unG6y_HXGDDGZEo1PZh83O7TrvPtPp-jG9r8HnXQmw7jq-yF1V3E84f5LPvx5er75XVx--3rzeXn26LhDKbC0sqgtoRwAFFRsqnQGsuZlpLxjYHKgLTCUEu04LVNMhWkFkvdItUNPctuVq7xeqfG4Hod9sprpw4FH1qlw-SaDhVnljFTW0itSi3VkiNwgySxG0tpmVifVtY4b3o0DQ5T0N0T6FNlcFvV-jslpJCyhgR49wAI_ueMcVK9iw12nR7Qz1GVFRNC1pQs1rf_WHd-DkNq1eKqZQWS1slVrq4m-BgD2uNjCKglHGoNh0rhUIdwqAX95vE3jkf-RCEZ6GqISRpaDH_v_g_2N1H3xvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647960937</pqid></control><display><type>article</type><title>Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saganowski, Stanisław ; Komoszyńska, Joanna ; Behnke, Maciej ; Perz, Bartosz ; Kunc, Dominika ; Klich, Bartłomiej ; Kaczmarek, Łukasz D. ; Kazienko, Przemysław</creator><creatorcontrib>Saganowski, Stanisław ; Komoszyńska, Joanna ; Behnke, Maciej ; Perz, Bartosz ; Kunc, Dominika ; Klich, Bartłomiej ; Kaczmarek, Łukasz D. ; Kazienko, Przemysław</creatorcontrib><description>The Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions. We collected data from 43 participants who watched short film clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear, and sadness. Three wearables were used to record physiological data: EEG, BVP (2x), HR, EDA, SKT, ACC (3x), and GYRO (2x); in parallel with the upper-body videos. After each film clip, participants completed two types of self-reports: (1) related to nine discrete emotions and (2) three affective dimensions: valence, arousal, and motivation. The obtained data facilitates various ER approaches, e.g., multimodal ER, EEG- vs. cardiovascular-based ER, discrete to dimensional representation transitions. The technical validation indicated that watching film clips elicited the targeted emotions. It also supported signals’ high quality.
Measurement(s)
cardiac output measurement • Electroencephalography • Galvanic Skin Response • Temperature • acceleration • facial expressions
Technology Type(s)
photoplethysmogram • electroencephalogram (5 electrodes) • electrodermal activity measurement • Sensor • Accelerometer • Video Recording
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
laboratory environment</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-022-01262-0</identifier><identifier>PMID: 35393434</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 706/689/477 ; Anger ; Arousal ; Data Descriptor ; EEG ; Emotional behavior ; Emotions ; Emotions - physiology ; Facial Expression ; Galvanic skin response ; Humanities and Social Sciences ; Humans ; Motivation ; multidisciplinary ; Pattern recognition ; Physiology ; Sadness - psychology ; Science ; Science (multidisciplinary) ; Self Report</subject><ispartof>Scientific data, 2022-04, Vol.9 (1), p.158-158, Article 158</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3</citedby><cites>FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3</cites><orcidid>0000-0002-9940-5117 ; 0000-0001-5868-356X ; 0000-0003-2918-0423 ; 0000-0003-1018-5574 ; 0000-0003-3607-5920 ; 0000-0001-7840-1830 ; 0000-0001-5565-8334 ; 0000-0002-2455-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2647960937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2647960937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35393434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saganowski, Stanisław</creatorcontrib><creatorcontrib>Komoszyńska, Joanna</creatorcontrib><creatorcontrib>Behnke, Maciej</creatorcontrib><creatorcontrib>Perz, Bartosz</creatorcontrib><creatorcontrib>Kunc, Dominika</creatorcontrib><creatorcontrib>Klich, Bartłomiej</creatorcontrib><creatorcontrib>Kaczmarek, Łukasz D.</creatorcontrib><creatorcontrib>Kazienko, Przemysław</creatorcontrib><title>Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>The Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions. We collected data from 43 participants who watched short film clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear, and sadness. Three wearables were used to record physiological data: EEG, BVP (2x), HR, EDA, SKT, ACC (3x), and GYRO (2x); in parallel with the upper-body videos. After each film clip, participants completed two types of self-reports: (1) related to nine discrete emotions and (2) three affective dimensions: valence, arousal, and motivation. The obtained data facilitates various ER approaches, e.g., multimodal ER, EEG- vs. cardiovascular-based ER, discrete to dimensional representation transitions. The technical validation indicated that watching film clips elicited the targeted emotions. It also supported signals’ high quality.
Measurement(s)
cardiac output measurement • Electroencephalography • Galvanic Skin Response • Temperature • acceleration • facial expressions
Technology Type(s)
photoplethysmogram • electroencephalogram (5 electrodes) • electrodermal activity measurement • Sensor • Accelerometer • Video Recording
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
laboratory environment</description><subject>639/705/117</subject><subject>706/689/477</subject><subject>Anger</subject><subject>Arousal</subject><subject>Data Descriptor</subject><subject>EEG</subject><subject>Emotional behavior</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>Facial Expression</subject><subject>Galvanic skin response</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Motivation</subject><subject>multidisciplinary</subject><subject>Pattern recognition</subject><subject>Physiology</subject><subject>Sadness - psychology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self Report</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwIOU6thObBRKqCq1UiQ2sLU98nfEoiYOdtMzb40zK0LJg4597jj_bVyfLXhO4IEDFh8gIl3UBZVkAKas0PstOS-BlwVhFnz9an2TnMe4AgFAGvIaX2QnlVFJG2WnWX_W-Hdzk_JAbPemI08cce38oBGyO4r2btnnEzhYBRx-m-D63unG6y_HXGDDGZEo1PZh83O7TrvPtPp-jG9r8HnXQmw7jq-yF1V3E84f5LPvx5er75XVx--3rzeXn26LhDKbC0sqgtoRwAFFRsqnQGsuZlpLxjYHKgLTCUEu04LVNMhWkFkvdItUNPctuVq7xeqfG4Hod9sprpw4FH1qlw-SaDhVnljFTW0itSi3VkiNwgySxG0tpmVifVtY4b3o0DQ5T0N0T6FNlcFvV-jslpJCyhgR49wAI_ueMcVK9iw12nR7Qz1GVFRNC1pQs1rf_WHd-DkNq1eKqZQWS1slVrq4m-BgD2uNjCKglHGoNh0rhUIdwqAX95vE3jkf-RCEZ6GqISRpaDH_v_g_2N1H3xvA</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Saganowski, Stanisław</creator><creator>Komoszyńska, Joanna</creator><creator>Behnke, Maciej</creator><creator>Perz, Bartosz</creator><creator>Kunc, Dominika</creator><creator>Klich, Bartłomiej</creator><creator>Kaczmarek, Łukasz D.</creator><creator>Kazienko, Przemysław</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9940-5117</orcidid><orcidid>https://orcid.org/0000-0001-5868-356X</orcidid><orcidid>https://orcid.org/0000-0003-2918-0423</orcidid><orcidid>https://orcid.org/0000-0003-1018-5574</orcidid><orcidid>https://orcid.org/0000-0003-3607-5920</orcidid><orcidid>https://orcid.org/0000-0001-7840-1830</orcidid><orcidid>https://orcid.org/0000-0001-5565-8334</orcidid><orcidid>https://orcid.org/0000-0002-2455-4556</orcidid></search><sort><creationdate>20220407</creationdate><title>Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables</title><author>Saganowski, Stanisław ; Komoszyńska, Joanna ; Behnke, Maciej ; Perz, Bartosz ; Kunc, Dominika ; Klich, Bartłomiej ; Kaczmarek, Łukasz D. ; Kazienko, Przemysław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/705/117</topic><topic>706/689/477</topic><topic>Anger</topic><topic>Arousal</topic><topic>Data Descriptor</topic><topic>EEG</topic><topic>Emotional behavior</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>Facial Expression</topic><topic>Galvanic skin response</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Motivation</topic><topic>multidisciplinary</topic><topic>Pattern recognition</topic><topic>Physiology</topic><topic>Sadness - psychology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saganowski, Stanisław</creatorcontrib><creatorcontrib>Komoszyńska, Joanna</creatorcontrib><creatorcontrib>Behnke, Maciej</creatorcontrib><creatorcontrib>Perz, Bartosz</creatorcontrib><creatorcontrib>Kunc, Dominika</creatorcontrib><creatorcontrib>Klich, Bartłomiej</creatorcontrib><creatorcontrib>Kaczmarek, Łukasz D.</creatorcontrib><creatorcontrib>Kazienko, Przemysław</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saganowski, Stanisław</au><au>Komoszyńska, Joanna</au><au>Behnke, Maciej</au><au>Perz, Bartosz</au><au>Kunc, Dominika</au><au>Klich, Bartłomiej</au><au>Kaczmarek, Łukasz D.</au><au>Kazienko, Przemysław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2022-04-07</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>158</spage><epage>158</epage><pages>158-158</pages><artnum>158</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>The Emognition dataset is dedicated to testing methods for emotion recognition (ER) from physiological responses and facial expressions. We collected data from 43 participants who watched short film clips eliciting nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear, and sadness. Three wearables were used to record physiological data: EEG, BVP (2x), HR, EDA, SKT, ACC (3x), and GYRO (2x); in parallel with the upper-body videos. After each film clip, participants completed two types of self-reports: (1) related to nine discrete emotions and (2) three affective dimensions: valence, arousal, and motivation. The obtained data facilitates various ER approaches, e.g., multimodal ER, EEG- vs. cardiovascular-based ER, discrete to dimensional representation transitions. The technical validation indicated that watching film clips elicited the targeted emotions. It also supported signals’ high quality.
Measurement(s)
cardiac output measurement • Electroencephalography • Galvanic Skin Response • Temperature • acceleration • facial expressions
Technology Type(s)
photoplethysmogram • electroencephalogram (5 electrodes) • electrodermal activity measurement • Sensor • Accelerometer • Video Recording
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
laboratory environment</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35393434</pmid><doi>10.1038/s41597-022-01262-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9940-5117</orcidid><orcidid>https://orcid.org/0000-0001-5868-356X</orcidid><orcidid>https://orcid.org/0000-0003-2918-0423</orcidid><orcidid>https://orcid.org/0000-0003-1018-5574</orcidid><orcidid>https://orcid.org/0000-0003-3607-5920</orcidid><orcidid>https://orcid.org/0000-0001-7840-1830</orcidid><orcidid>https://orcid.org/0000-0001-5565-8334</orcidid><orcidid>https://orcid.org/0000-0002-2455-4556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2022-04, Vol.9 (1), p.158-158, Article 158 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_54f44d7f0446415a95e05de1f1acf332 |
source | Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/117 706/689/477 Anger Arousal Data Descriptor EEG Emotional behavior Emotions Emotions - physiology Facial Expression Galvanic skin response Humanities and Social Sciences Humans Motivation multidisciplinary Pattern recognition Physiology Sadness - psychology Science Science (multidisciplinary) Self Report |
title | Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emognition%20dataset:%20emotion%20recognition%20with%20self-reports,%20facial%20expressions,%20and%20physiology%20using%20wearables&rft.jtitle=Scientific%20data&rft.au=Saganowski,%20Stanis%C5%82aw&rft.date=2022-04-07&rft.volume=9&rft.issue=1&rft.spage=158&rft.epage=158&rft.pages=158-158&rft.artnum=158&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-022-01262-0&rft_dat=%3Cproquest_doaj_%3E2648897310%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-f36deaf115008631b6efdf54a9945bd06d09f8d3f1a857fb6e3817806d0fe3ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2647960937&rft_id=info:pmid/35393434&rfr_iscdi=true |