Loading…

NRTPredictor: identifying rice root cell state in single-cell RNA-seq via ensemble learning

Single-cell RNA sequencing (scRNA-seq) measurements of gene expression show great promise for studying the cellular heterogeneity of rice roots. How precisely annotating cell identity is a major unresolved problem in plant scRNA-seq analysis due to the inherent high dimensionality and sparsity. To a...

Full description

Saved in:
Bibliographic Details
Published in:Plant methods 2023-11, Vol.19 (1), p.1-119, Article 119
Main Authors: Wang, Hao, Lin, Yu-Nan, Yan, Shen, Hong, Jing-Peng, Tan, Jia-Rui, Chen, Yan-Qing, Cao, Yong-Sheng, Fang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-cell RNA sequencing (scRNA-seq) measurements of gene expression show great promise for studying the cellular heterogeneity of rice roots. How precisely annotating cell identity is a major unresolved problem in plant scRNA-seq analysis due to the inherent high dimensionality and sparsity. To address this challenge, we present NRTPredictor, an ensemble-learning system, to predict rice root cell stage and mine biomarkers through complete model interpretability. The performance of NRTPredictor was evaluated using a test dataset, with 98.01% accuracy and 95.45% recall. With the power of interpretability provided by NRTPredictor, our model recognizes 110 marker genes partially involved in phenylpropanoid biosynthesis. Expression patterns of rice root could be mapped by the above-mentioned candidate genes, showing the superiority of NRTPredictor. Integrated analysis of scRNA and bulk RNA-seq data revealed aberrant expression of Epidermis cell subpopulations in flooding, Pi, and salt stresses. Taken together, our results demonstrate that NRTPredictor is a useful tool for automated prediction of rice root cell stage and provides a valuable resource for deciphering the rice root cellular heterogeneity and the molecular mechanisms of flooding, Pi, and salt stresses. Based on the proposed model, a free webserver has been established, which is available at https://www.cgris.net/nrtp.
ISSN:1746-4811
1746-4811
DOI:10.1186/s13007-023-01092-0