Loading…
Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
Optical metasurfaces, comprising subwavelength quasi-planar nanostructures, constitute a universal platform for manipulating the amplitude, phase, and polarization of light, thus paving a way for the next generation of highly integrated multifunctional optical devices. In this work, we introduce a r...
Saved in:
Published in: | Opto-Electronic Advances 2024-01, Vol.7 (8), p.240076-240076 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical metasurfaces, comprising subwavelength quasi-planar nanostructures, constitute a universal platform for manipulating the amplitude, phase, and polarization of light, thus paving a way for the next generation of highly integrated multifunctional optical devices. In this work, we introduce a reflective metasurface for the generation of a complete (angularly resolved) polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates. In the proof-of-concept demonstration, we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states, which can also be dynamically altered by switching the spin of incident light. The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities. |
---|---|
ISSN: | 2096-4579 |
DOI: | 10.29026/oea.2024.240076 |