Loading…

A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology

Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-05, Vol.10 (10), p.e31120, Article e31120
Main Authors: Nishanth Rao, K., Sudha, D., Ibrahim Khalaf, Osamah, Abdulsaheb, Ghaida Muttasher, Kumar, Aruru Sai, Priyanka, S. Siva, Ouahada, Khmaies, Hamam, Habib
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c482t-c12c0025a86ecc3384f3f0523c2bfa68a488bcfb9149541b8b6e8571c222d193
container_end_page
container_issue 10
container_start_page e31120
container_title Heliyon
container_volume 10
creator Nishanth Rao, K.
Sudha, D.
Ibrahim Khalaf, Osamah
Abdulsaheb, Ghaida Muttasher
Kumar, Aruru Sai
Priyanka, S. Siva
Ouahada, Khmaies
Hamam, Habib
description Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out due to their inherent efficiency and speed, derived from ancient Indian mathematical principles. This study presents a comprehensive analysis and comparison of 4-bit Vedic multiplier designs utilizing Gate Diffusion Input (GDI), Complementary Metal-Oxide-Semiconductor (CMOS), and Transmission Gate (TG) technologies, utilizing different adder architectures such as Ripple Carry Adder (RCA), and Carry Lookahead Adder (CLA), Carry Skip Adder (CSA). The objective is to explore the performance, area, and power consumption characteristics of these multipliers across different technologies and adder implementations. Each multiplier architecture is meticulously designed and optimized to leverage the unique features of the respective technology while adhering to the principles of Vedic mathematics. The designs are evaluated based on parameters such as transistor count, delay, power dissipation, and area. The results demonstrate the effectiveness of GDI technology in terms of in tems of delay, area, power and PDP when compared with other technologies. The 4-bit Vedic multiplier has been designed using 32 nm technology within Tanner EDA software tools.
doi_str_mv 10.1016/j.heliyon.2024.e31120
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_551a97fde9234d458f0a00fbd0fad644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024071512</els_id><doaj_id>oai_doaj_org_article_551a97fde9234d458f0a00fbd0fad644</doaj_id><sourcerecordid>3146668902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-c12c0025a86ecc3384f3f0523c2bfa68a488bcfb9149541b8b6e8571c222d193</originalsourceid><addsrcrecordid>eNqFkU1v1DAQQCMEolXpTwD5yCVbf8c5oaqUdqVKXHq3HHuc9cqJFztZaf89WXYp7YmTLc_Mm_G8qvpM8IpgIm-2qw3EcEjjimLKV8AIofhddUk5FrXiHL9_db-orkvZYoyJULJt2MfqgrWywVTQy0rfojHtISIYIfcHBN4HG2CcEK-7MKE9uGDRMMcp7GKAjOYSxh4NyQUfwKGH72tkdrucjN0gMyFG0TigCexmTDH1h0_VB29igevzeVU9_7h_vnusn34-rO9un2rLFZ1qS6jFy0RGSbCWMcU981hQZmnnjVSGK9VZ37WEt4KTTnUSlGiIpZQ60rKran3CumS2epfDYPJBJxP0n4eUe23yFGwELQQxbeMdtJRxx4Xy2GDsO4e9cZLzhfXtxNrN3QDOLsvIJr6Bvo2MYaP7tNeESNbg9kj4eibk9GuGMukhFAsxmhHSXDQjXEqpWkyXVHFKtTmVksG_9CFYH13rrT671kfX-uR6qfvyesiXqr9m__0Clq3vF3O6HL3axWcGOy17Cf9p8RvD9L2D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146668902</pqid></control><display><type>article</type><title>A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Nishanth Rao, K. ; Sudha, D. ; Ibrahim Khalaf, Osamah ; Abdulsaheb, Ghaida Muttasher ; Kumar, Aruru Sai ; Priyanka, S. Siva ; Ouahada, Khmaies ; Hamam, Habib</creator><creatorcontrib>Nishanth Rao, K. ; Sudha, D. ; Ibrahim Khalaf, Osamah ; Abdulsaheb, Ghaida Muttasher ; Kumar, Aruru Sai ; Priyanka, S. Siva ; Ouahada, Khmaies ; Hamam, Habib</creatorcontrib><description>Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out due to their inherent efficiency and speed, derived from ancient Indian mathematical principles. This study presents a comprehensive analysis and comparison of 4-bit Vedic multiplier designs utilizing Gate Diffusion Input (GDI), Complementary Metal-Oxide-Semiconductor (CMOS), and Transmission Gate (TG) technologies, utilizing different adder architectures such as Ripple Carry Adder (RCA), and Carry Lookahead Adder (CLA), Carry Skip Adder (CSA). The objective is to explore the performance, area, and power consumption characteristics of these multipliers across different technologies and adder implementations. Each multiplier architecture is meticulously designed and optimized to leverage the unique features of the respective technology while adhering to the principles of Vedic mathematics. The designs are evaluated based on parameters such as transistor count, delay, power dissipation, and area. The results demonstrate the effectiveness of GDI technology in terms of in tems of delay, area, power and PDP when compared with other technologies. The 4-bit Vedic multiplier has been designed using 32 nm technology within Tanner EDA software tools.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e31120</identifier><identifier>PMID: 39670252</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Area ; Caary skip adder ; Carry look ahead adder ; CMOS ; Delay ; Gate diffusion input ; PDP ; Ripple carry adder ; Transmission gate</subject><ispartof>Heliyon, 2024-05, Vol.10 (10), p.e31120, Article e31120</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c482t-c12c0025a86ecc3384f3f0523c2bfa68a488bcfb9149541b8b6e8571c222d193</cites><orcidid>0000-0002-4750-8384 ; 0000-0001-7924-8575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024071512$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39670252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishanth Rao, K.</creatorcontrib><creatorcontrib>Sudha, D.</creatorcontrib><creatorcontrib>Ibrahim Khalaf, Osamah</creatorcontrib><creatorcontrib>Abdulsaheb, Ghaida Muttasher</creatorcontrib><creatorcontrib>Kumar, Aruru Sai</creatorcontrib><creatorcontrib>Priyanka, S. Siva</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><title>A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out due to their inherent efficiency and speed, derived from ancient Indian mathematical principles. This study presents a comprehensive analysis and comparison of 4-bit Vedic multiplier designs utilizing Gate Diffusion Input (GDI), Complementary Metal-Oxide-Semiconductor (CMOS), and Transmission Gate (TG) technologies, utilizing different adder architectures such as Ripple Carry Adder (RCA), and Carry Lookahead Adder (CLA), Carry Skip Adder (CSA). The objective is to explore the performance, area, and power consumption characteristics of these multipliers across different technologies and adder implementations. Each multiplier architecture is meticulously designed and optimized to leverage the unique features of the respective technology while adhering to the principles of Vedic mathematics. The designs are evaluated based on parameters such as transistor count, delay, power dissipation, and area. The results demonstrate the effectiveness of GDI technology in terms of in tems of delay, area, power and PDP when compared with other technologies. The 4-bit Vedic multiplier has been designed using 32 nm technology within Tanner EDA software tools.</description><subject>Area</subject><subject>Caary skip adder</subject><subject>Carry look ahead adder</subject><subject>CMOS</subject><subject>Delay</subject><subject>Gate diffusion input</subject><subject>PDP</subject><subject>Ripple carry adder</subject><subject>Transmission gate</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQQCMEolXpTwD5yCVbf8c5oaqUdqVKXHq3HHuc9cqJFztZaf89WXYp7YmTLc_Mm_G8qvpM8IpgIm-2qw3EcEjjimLKV8AIofhddUk5FrXiHL9_db-orkvZYoyJULJt2MfqgrWywVTQy0rfojHtISIYIfcHBN4HG2CcEK-7MKE9uGDRMMcp7GKAjOYSxh4NyQUfwKGH72tkdrucjN0gMyFG0TigCexmTDH1h0_VB29igevzeVU9_7h_vnusn34-rO9un2rLFZ1qS6jFy0RGSbCWMcU981hQZmnnjVSGK9VZ37WEt4KTTnUSlGiIpZQ60rKran3CumS2epfDYPJBJxP0n4eUe23yFGwELQQxbeMdtJRxx4Xy2GDsO4e9cZLzhfXtxNrN3QDOLsvIJr6Bvo2MYaP7tNeESNbg9kj4eibk9GuGMukhFAsxmhHSXDQjXEqpWkyXVHFKtTmVksG_9CFYH13rrT671kfX-uR6qfvyesiXqr9m__0Clq3vF3O6HL3axWcGOy17Cf9p8RvD9L2D</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Nishanth Rao, K.</creator><creator>Sudha, D.</creator><creator>Ibrahim Khalaf, Osamah</creator><creator>Abdulsaheb, Ghaida Muttasher</creator><creator>Kumar, Aruru Sai</creator><creator>Priyanka, S. Siva</creator><creator>Ouahada, Khmaies</creator><creator>Hamam, Habib</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0001-7924-8575</orcidid></search><sort><creationdate>20240530</creationdate><title>A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology</title><author>Nishanth Rao, K. ; Sudha, D. ; Ibrahim Khalaf, Osamah ; Abdulsaheb, Ghaida Muttasher ; Kumar, Aruru Sai ; Priyanka, S. Siva ; Ouahada, Khmaies ; Hamam, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-c12c0025a86ecc3384f3f0523c2bfa68a488bcfb9149541b8b6e8571c222d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Area</topic><topic>Caary skip adder</topic><topic>Carry look ahead adder</topic><topic>CMOS</topic><topic>Delay</topic><topic>Gate diffusion input</topic><topic>PDP</topic><topic>Ripple carry adder</topic><topic>Transmission gate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishanth Rao, K.</creatorcontrib><creatorcontrib>Sudha, D.</creatorcontrib><creatorcontrib>Ibrahim Khalaf, Osamah</creatorcontrib><creatorcontrib>Abdulsaheb, Ghaida Muttasher</creatorcontrib><creatorcontrib>Kumar, Aruru Sai</creatorcontrib><creatorcontrib>Priyanka, S. Siva</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><creatorcontrib>Hamam, Habib</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishanth Rao, K.</au><au>Sudha, D.</au><au>Ibrahim Khalaf, Osamah</au><au>Abdulsaheb, Ghaida Muttasher</au><au>Kumar, Aruru Sai</au><au>Priyanka, S. Siva</au><au>Ouahada, Khmaies</au><au>Hamam, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>e31120</spage><pages>e31120-</pages><artnum>e31120</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Multipliers are essential components within digital signal processing, arithmetic operations, and various computational tasks, making their design and optimization crucial for improving the efficiency and performance of integrated circuits. Among multiplier architectures, Vedic multipliers stand out due to their inherent efficiency and speed, derived from ancient Indian mathematical principles. This study presents a comprehensive analysis and comparison of 4-bit Vedic multiplier designs utilizing Gate Diffusion Input (GDI), Complementary Metal-Oxide-Semiconductor (CMOS), and Transmission Gate (TG) technologies, utilizing different adder architectures such as Ripple Carry Adder (RCA), and Carry Lookahead Adder (CLA), Carry Skip Adder (CSA). The objective is to explore the performance, area, and power consumption characteristics of these multipliers across different technologies and adder implementations. Each multiplier architecture is meticulously designed and optimized to leverage the unique features of the respective technology while adhering to the principles of Vedic mathematics. The designs are evaluated based on parameters such as transistor count, delay, power dissipation, and area. The results demonstrate the effectiveness of GDI technology in terms of in tems of delay, area, power and PDP when compared with other technologies. The 4-bit Vedic multiplier has been designed using 32 nm technology within Tanner EDA software tools.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39670252</pmid><doi>10.1016/j.heliyon.2024.e31120</doi><orcidid>https://orcid.org/0000-0002-4750-8384</orcidid><orcidid>https://orcid.org/0000-0001-7924-8575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-05, Vol.10 (10), p.e31120, Article e31120
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_551a97fde9234d458f0a00fbd0fad644
source ScienceDirect®; PubMed Central
subjects Area
Caary skip adder
Carry look ahead adder
CMOS
Delay
Gate diffusion input
PDP
Ripple carry adder
Transmission gate
title A novel energy efficient 4-bit vedic multiplier using modified GDI approach at 32 nm technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20energy%20efficient%204-bit%20vedic%20multiplier%20using%20modified%20GDI%20approach%20at%2032%20nm%20technology&rft.jtitle=Heliyon&rft.au=Nishanth%20Rao,%20K.&rft.date=2024-05-30&rft.volume=10&rft.issue=10&rft.spage=e31120&rft.pages=e31120-&rft.artnum=e31120&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e31120&rft_dat=%3Cproquest_doaj_%3E3146668902%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-c12c0025a86ecc3384f3f0523c2bfa68a488bcfb9149541b8b6e8571c222d193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146668902&rft_id=info:pmid/39670252&rfr_iscdi=true