Loading…
Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, in...
Saved in:
Published in: | BMC plant biology 2024-04, Vol.24 (1), p.309-309, Article 309 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3 |
container_end_page | 309 |
container_issue | 1 |
container_start_page | 309 |
container_title | BMC plant biology |
container_volume | 24 |
creator | Klińska-Bąchor, Sylwia Demski, Kamil Gong, Yangmin Banaś, Antoni |
description | Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs.
In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool).
This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids. |
doi_str_mv | 10.1186/s12870-024-05014-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5522031679a440c99c7db6ca6b068454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791178218</galeid><doaj_id>oai_doaj_org_article_5522031679a440c99c7db6ca6b068454</doaj_id><sourcerecordid>A791178218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</originalsourceid><addsrcrecordid>eNqVU01v1DAQjRCIlsIf4IAicYFDip34I-aClhWFSitRAT1bE8fZ9Sobb20HWH4Uv5HZbmkbbiiHGY3feyM_52XZc0pOKa3Fm0jLWpKClKwgnFBWyAfZMWWSFmVZqof3-qPsSYxrQqismXqcHVW1YKom9Dj7_d55s7IbZ6DPzQoCmGSD-wXJ-SH3XQ5m1xdzP3vbun277HfGBt9fz1OAIXY2QLRl3gW_ydPK5ghM2F6swPoW5Xb9iAfBGR-GMWEPQ5u7FPOtT3ZIDhfbrrMm5bhxMS8uLs9mMW-cj7sB9aKLuRvybQ9DgqfZow76aJ_d1JPs8uzDt_mnYvH54_l8tiiMKGUqRINVGNHWsmplW1nBa1BNZ5QC21DSGk5wCkrxjlvSckF5JZq6q6AxhJrqJDs_6LYe1nob3AbCTntw-nrgw1JDSM70VnNelqSiQipgjOAGI9tGGBANETXjDLVOD1rxh92OzUQt9mMDYV90tJpWlBHyP4RSMaqQ8O5AQPTGtgZdDdBPeNOTwa300n_XlJJKcFWhwqsbheCvRhuT3rhobI-mWz9GXRHGKZVcSYS-_Ae69mMY8DUQxRmtmWTiDrUE9MgNncfFZi-qZ1KhVF3S-u6mExR-7f6P9IPtHM4nhNcTAmKS_ZmWMMaoz79-mWLLA9YEH2Ow3a0hlOh9gPQhQBoDpK8DpPe3e3HfylvK38RUfwCmEBls</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054184746</pqid></control><display><type>article</type><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni</creator><creatorcontrib>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni ; Sveriges lantbruksuniversitet</creatorcontrib><description>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs.
In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool).
This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-024-05014-7</identifier><identifier>PMID: 38649801</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accumulation ; Acyl Coenzyme A - metabolism ; Algae ; Analysis ; Aquatic microorganisms ; Biochemistry ; Biosynthesis ; Chemical synthesis ; Composition ; DGAT ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - genetics ; Diacylglycerol O-Acyltransferase - metabolism ; Diatoms - enzymology ; Diatoms - genetics ; Diatoms - metabolism ; Diglycerides ; Diseases and pests ; Docosahexaenoic acid ; Eicosapentaenoic acid ; Eicosapentaenoic Acid - biosynthesis ; Eicosapentaenoic Acid - metabolism ; Enzymes ; Fatty acids ; Fatty Acids, Omega-3 - biosynthesis ; Fatty Acids, Omega-3 - metabolism ; Fish oils ; Gene expression ; Genetic aspects ; Genomes ; Glycerol ; Growth ; Lipids ; Marine fish ; Metabolic Engineering ; Microalgae ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana Benthamiana ; Oilseed plants ; Oilseeds ; Omega-3 fatty acids ; Optimization ; Phaeodactylum tricornutum ; Plankton ; Plant Biotechnology ; Plants, Genetically Modified ; Polyunsaturated fatty acids ; Preferences ; Proteins ; Tobacco ; Triglycerides ; Triglycerides - biosynthesis ; Triglycerides - metabolism ; Växtbioteknologi ; Yeast ; Yeasts</subject><ispartof>BMC plant biology, 2024-04, Vol.24 (1), p.309-309, Article 309</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3054184746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38649801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/129419$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131400$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klińska-Bąchor, Sylwia</creatorcontrib><creatorcontrib>Demski, Kamil</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><creatorcontrib>Banaś, Antoni</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs.
In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool).
This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</description><subject>Accumulation</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Algae</subject><subject>Analysis</subject><subject>Aquatic microorganisms</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>DGAT</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - genetics</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>Diatoms - enzymology</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>Diglycerides</subject><subject>Diseases and pests</subject><subject>Docosahexaenoic acid</subject><subject>Eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - biosynthesis</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-3 - biosynthesis</subject><subject>Fatty Acids, Omega-3 - metabolism</subject><subject>Fish oils</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Growth</subject><subject>Lipids</subject><subject>Marine fish</subject><subject>Metabolic Engineering</subject><subject>Microalgae</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana Benthamiana</subject><subject>Oilseed plants</subject><subject>Oilseeds</subject><subject>Omega-3 fatty acids</subject><subject>Optimization</subject><subject>Phaeodactylum tricornutum</subject><subject>Plankton</subject><subject>Plant Biotechnology</subject><subject>Plants, Genetically Modified</subject><subject>Polyunsaturated fatty acids</subject><subject>Preferences</subject><subject>Proteins</subject><subject>Tobacco</subject><subject>Triglycerides</subject><subject>Triglycerides - biosynthesis</subject><subject>Triglycerides - metabolism</subject><subject>Växtbioteknologi</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVU01v1DAQjRCIlsIf4IAicYFDip34I-aClhWFSitRAT1bE8fZ9Sobb20HWH4Uv5HZbmkbbiiHGY3feyM_52XZc0pOKa3Fm0jLWpKClKwgnFBWyAfZMWWSFmVZqof3-qPsSYxrQqismXqcHVW1YKom9Dj7_d55s7IbZ6DPzQoCmGSD-wXJ-SH3XQ5m1xdzP3vbun277HfGBt9fz1OAIXY2QLRl3gW_ydPK5ghM2F6swPoW5Xb9iAfBGR-GMWEPQ5u7FPOtT3ZIDhfbrrMm5bhxMS8uLs9mMW-cj7sB9aKLuRvybQ9DgqfZow76aJ_d1JPs8uzDt_mnYvH54_l8tiiMKGUqRINVGNHWsmplW1nBa1BNZ5QC21DSGk5wCkrxjlvSckF5JZq6q6AxhJrqJDs_6LYe1nob3AbCTntw-nrgw1JDSM70VnNelqSiQipgjOAGI9tGGBANETXjDLVOD1rxh92OzUQt9mMDYV90tJpWlBHyP4RSMaqQ8O5AQPTGtgZdDdBPeNOTwa300n_XlJJKcFWhwqsbheCvRhuT3rhobI-mWz9GXRHGKZVcSYS-_Ae69mMY8DUQxRmtmWTiDrUE9MgNncfFZi-qZ1KhVF3S-u6mExR-7f6P9IPtHM4nhNcTAmKS_ZmWMMaoz79-mWLLA9YEH2Ow3a0hlOh9gPQhQBoDpK8DpPe3e3HfylvK38RUfwCmEBls</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Klińska-Bąchor, Sylwia</creator><creator>Demski, Kamil</creator><creator>Gong, Yangmin</creator><creator>Banaś, Antoni</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20240423</creationdate><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><author>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Algae</topic><topic>Analysis</topic><topic>Aquatic microorganisms</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>DGAT</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - genetics</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>Diatoms - enzymology</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>Diglycerides</topic><topic>Diseases and pests</topic><topic>Docosahexaenoic acid</topic><topic>Eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - biosynthesis</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-3 - biosynthesis</topic><topic>Fatty Acids, Omega-3 - metabolism</topic><topic>Fish oils</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Growth</topic><topic>Lipids</topic><topic>Marine fish</topic><topic>Metabolic Engineering</topic><topic>Microalgae</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana Benthamiana</topic><topic>Oilseed plants</topic><topic>Oilseeds</topic><topic>Omega-3 fatty acids</topic><topic>Optimization</topic><topic>Phaeodactylum tricornutum</topic><topic>Plankton</topic><topic>Plant Biotechnology</topic><topic>Plants, Genetically Modified</topic><topic>Polyunsaturated fatty acids</topic><topic>Preferences</topic><topic>Proteins</topic><topic>Tobacco</topic><topic>Triglycerides</topic><topic>Triglycerides - biosynthesis</topic><topic>Triglycerides - metabolism</topic><topic>Växtbioteknologi</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klińska-Bąchor, Sylwia</creatorcontrib><creatorcontrib>Demski, Kamil</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><creatorcontrib>Banaś, Antoni</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klińska-Bąchor, Sylwia</au><au>Demski, Kamil</au><au>Gong, Yangmin</au><au>Banaś, Antoni</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>309</spage><epage>309</epage><pages>309-309</pages><artnum>309</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs.
In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool).
This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38649801</pmid><doi>10.1186/s12870-024-05014-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2229 |
ispartof | BMC plant biology, 2024-04, Vol.24 (1), p.309-309, Article 309 |
issn | 1471-2229 1471-2229 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5522031679a440c99c7db6ca6b068454 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accumulation Acyl Coenzyme A - metabolism Algae Analysis Aquatic microorganisms Biochemistry Biosynthesis Chemical synthesis Composition DGAT Diacylglycerol O-acyltransferase Diacylglycerol O-Acyltransferase - genetics Diacylglycerol O-Acyltransferase - metabolism Diatoms - enzymology Diatoms - genetics Diatoms - metabolism Diglycerides Diseases and pests Docosahexaenoic acid Eicosapentaenoic acid Eicosapentaenoic Acid - biosynthesis Eicosapentaenoic Acid - metabolism Enzymes Fatty acids Fatty Acids, Omega-3 - biosynthesis Fatty Acids, Omega-3 - metabolism Fish oils Gene expression Genetic aspects Genomes Glycerol Growth Lipids Marine fish Metabolic Engineering Microalgae Nicotiana - enzymology Nicotiana - genetics Nicotiana - metabolism Nicotiana Benthamiana Oilseed plants Oilseeds Omega-3 fatty acids Optimization Phaeodactylum tricornutum Plankton Plant Biotechnology Plants, Genetically Modified Polyunsaturated fatty acids Preferences Proteins Tobacco Triglycerides Triglycerides - biosynthesis Triglycerides - metabolism Växtbioteknologi Yeast Yeasts |
title | Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization%20of%20acyl-CoA:diacylglycerol%20acyltransferase2%20from%20the%20diatom%20Phaeodactylum%20tricornutum%20and%20its%20potential%20effect%20on%20LC-PUFAs%20biosynthesis%20in%20planta&rft.jtitle=BMC%20plant%20biology&rft.au=Kli%C5%84ska-B%C4%85chor,%20Sylwia&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-04-23&rft.volume=24&rft.issue=1&rft.spage=309&rft.epage=309&rft.pages=309-309&rft.artnum=309&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-024-05014-7&rft_dat=%3Cgale_doaj_%3EA791178218%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054184746&rft_id=info:pmid/38649801&rft_galeid=A791178218&rfr_iscdi=true |