Loading…

Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, in...

Full description

Saved in:
Bibliographic Details
Published in:BMC plant biology 2024-04, Vol.24 (1), p.309-309, Article 309
Main Authors: Klińska-Bąchor, Sylwia, Demski, Kamil, Gong, Yangmin, Banaś, Antoni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3
container_end_page 309
container_issue 1
container_start_page 309
container_title BMC plant biology
container_volume 24
creator Klińska-Bąchor, Sylwia
Demski, Kamil
Gong, Yangmin
Banaś, Antoni
description Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.
doi_str_mv 10.1186/s12870-024-05014-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5522031679a440c99c7db6ca6b068454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791178218</galeid><doaj_id>oai_doaj_org_article_5522031679a440c99c7db6ca6b068454</doaj_id><sourcerecordid>A791178218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</originalsourceid><addsrcrecordid>eNqVU01v1DAQjRCIlsIf4IAicYFDip34I-aClhWFSitRAT1bE8fZ9Sobb20HWH4Uv5HZbmkbbiiHGY3feyM_52XZc0pOKa3Fm0jLWpKClKwgnFBWyAfZMWWSFmVZqof3-qPsSYxrQqismXqcHVW1YKom9Dj7_d55s7IbZ6DPzQoCmGSD-wXJ-SH3XQ5m1xdzP3vbun277HfGBt9fz1OAIXY2QLRl3gW_ydPK5ghM2F6swPoW5Xb9iAfBGR-GMWEPQ5u7FPOtT3ZIDhfbrrMm5bhxMS8uLs9mMW-cj7sB9aKLuRvybQ9DgqfZow76aJ_d1JPs8uzDt_mnYvH54_l8tiiMKGUqRINVGNHWsmplW1nBa1BNZ5QC21DSGk5wCkrxjlvSckF5JZq6q6AxhJrqJDs_6LYe1nob3AbCTntw-nrgw1JDSM70VnNelqSiQipgjOAGI9tGGBANETXjDLVOD1rxh92OzUQt9mMDYV90tJpWlBHyP4RSMaqQ8O5AQPTGtgZdDdBPeNOTwa300n_XlJJKcFWhwqsbheCvRhuT3rhobI-mWz9GXRHGKZVcSYS-_Ae69mMY8DUQxRmtmWTiDrUE9MgNncfFZi-qZ1KhVF3S-u6mExR-7f6P9IPtHM4nhNcTAmKS_ZmWMMaoz79-mWLLA9YEH2Ow3a0hlOh9gPQhQBoDpK8DpPe3e3HfylvK38RUfwCmEBls</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054184746</pqid></control><display><type>article</type><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni</creator><creatorcontrib>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni ; Sveriges lantbruksuniversitet</creatorcontrib><description>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-024-05014-7</identifier><identifier>PMID: 38649801</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accumulation ; Acyl Coenzyme A - metabolism ; Algae ; Analysis ; Aquatic microorganisms ; Biochemistry ; Biosynthesis ; Chemical synthesis ; Composition ; DGAT ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - genetics ; Diacylglycerol O-Acyltransferase - metabolism ; Diatoms - enzymology ; Diatoms - genetics ; Diatoms - metabolism ; Diglycerides ; Diseases and pests ; Docosahexaenoic acid ; Eicosapentaenoic acid ; Eicosapentaenoic Acid - biosynthesis ; Eicosapentaenoic Acid - metabolism ; Enzymes ; Fatty acids ; Fatty Acids, Omega-3 - biosynthesis ; Fatty Acids, Omega-3 - metabolism ; Fish oils ; Gene expression ; Genetic aspects ; Genomes ; Glycerol ; Growth ; Lipids ; Marine fish ; Metabolic Engineering ; Microalgae ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana Benthamiana ; Oilseed plants ; Oilseeds ; Omega-3 fatty acids ; Optimization ; Phaeodactylum tricornutum ; Plankton ; Plant Biotechnology ; Plants, Genetically Modified ; Polyunsaturated fatty acids ; Preferences ; Proteins ; Tobacco ; Triglycerides ; Triglycerides - biosynthesis ; Triglycerides - metabolism ; Växtbioteknologi ; Yeast ; Yeasts</subject><ispartof>BMC plant biology, 2024-04, Vol.24 (1), p.309-309, Article 309</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3054184746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38649801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/129419$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131400$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klińska-Bąchor, Sylwia</creatorcontrib><creatorcontrib>Demski, Kamil</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><creatorcontrib>Banaś, Antoni</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</description><subject>Accumulation</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Algae</subject><subject>Analysis</subject><subject>Aquatic microorganisms</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>DGAT</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - genetics</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>Diatoms - enzymology</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>Diglycerides</subject><subject>Diseases and pests</subject><subject>Docosahexaenoic acid</subject><subject>Eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - biosynthesis</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-3 - biosynthesis</subject><subject>Fatty Acids, Omega-3 - metabolism</subject><subject>Fish oils</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Growth</subject><subject>Lipids</subject><subject>Marine fish</subject><subject>Metabolic Engineering</subject><subject>Microalgae</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana Benthamiana</subject><subject>Oilseed plants</subject><subject>Oilseeds</subject><subject>Omega-3 fatty acids</subject><subject>Optimization</subject><subject>Phaeodactylum tricornutum</subject><subject>Plankton</subject><subject>Plant Biotechnology</subject><subject>Plants, Genetically Modified</subject><subject>Polyunsaturated fatty acids</subject><subject>Preferences</subject><subject>Proteins</subject><subject>Tobacco</subject><subject>Triglycerides</subject><subject>Triglycerides - biosynthesis</subject><subject>Triglycerides - metabolism</subject><subject>Växtbioteknologi</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVU01v1DAQjRCIlsIf4IAicYFDip34I-aClhWFSitRAT1bE8fZ9Sobb20HWH4Uv5HZbmkbbiiHGY3feyM_52XZc0pOKa3Fm0jLWpKClKwgnFBWyAfZMWWSFmVZqof3-qPsSYxrQqismXqcHVW1YKom9Dj7_d55s7IbZ6DPzQoCmGSD-wXJ-SH3XQ5m1xdzP3vbun277HfGBt9fz1OAIXY2QLRl3gW_ydPK5ghM2F6swPoW5Xb9iAfBGR-GMWEPQ5u7FPOtT3ZIDhfbrrMm5bhxMS8uLs9mMW-cj7sB9aKLuRvybQ9DgqfZow76aJ_d1JPs8uzDt_mnYvH54_l8tiiMKGUqRINVGNHWsmplW1nBa1BNZ5QC21DSGk5wCkrxjlvSckF5JZq6q6AxhJrqJDs_6LYe1nob3AbCTntw-nrgw1JDSM70VnNelqSiQipgjOAGI9tGGBANETXjDLVOD1rxh92OzUQt9mMDYV90tJpWlBHyP4RSMaqQ8O5AQPTGtgZdDdBPeNOTwa300n_XlJJKcFWhwqsbheCvRhuT3rhobI-mWz9GXRHGKZVcSYS-_Ae69mMY8DUQxRmtmWTiDrUE9MgNncfFZi-qZ1KhVF3S-u6mExR-7f6P9IPtHM4nhNcTAmKS_ZmWMMaoz79-mWLLA9YEH2Ow3a0hlOh9gPQhQBoDpK8DpPe3e3HfylvK38RUfwCmEBls</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Klińska-Bąchor, Sylwia</creator><creator>Demski, Kamil</creator><creator>Gong, Yangmin</creator><creator>Banaś, Antoni</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20240423</creationdate><title>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</title><author>Klińska-Bąchor, Sylwia ; Demski, Kamil ; Gong, Yangmin ; Banaś, Antoni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Algae</topic><topic>Analysis</topic><topic>Aquatic microorganisms</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>DGAT</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - genetics</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>Diatoms - enzymology</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>Diglycerides</topic><topic>Diseases and pests</topic><topic>Docosahexaenoic acid</topic><topic>Eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - biosynthesis</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-3 - biosynthesis</topic><topic>Fatty Acids, Omega-3 - metabolism</topic><topic>Fish oils</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Growth</topic><topic>Lipids</topic><topic>Marine fish</topic><topic>Metabolic Engineering</topic><topic>Microalgae</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana Benthamiana</topic><topic>Oilseed plants</topic><topic>Oilseeds</topic><topic>Omega-3 fatty acids</topic><topic>Optimization</topic><topic>Phaeodactylum tricornutum</topic><topic>Plankton</topic><topic>Plant Biotechnology</topic><topic>Plants, Genetically Modified</topic><topic>Polyunsaturated fatty acids</topic><topic>Preferences</topic><topic>Proteins</topic><topic>Tobacco</topic><topic>Triglycerides</topic><topic>Triglycerides - biosynthesis</topic><topic>Triglycerides - metabolism</topic><topic>Växtbioteknologi</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klińska-Bąchor, Sylwia</creatorcontrib><creatorcontrib>Demski, Kamil</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><creatorcontrib>Banaś, Antoni</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klińska-Bąchor, Sylwia</au><au>Demski, Kamil</au><au>Gong, Yangmin</au><au>Banaś, Antoni</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>309</spage><epage>309</epage><pages>309-309</pages><artnum>309</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38649801</pmid><doi>10.1186/s12870-024-05014-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2024-04, Vol.24 (1), p.309-309, Article 309
issn 1471-2229
1471-2229
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5522031679a440c99c7db6ca6b068454
source Publicly Available Content Database; PubMed Central
subjects Accumulation
Acyl Coenzyme A - metabolism
Algae
Analysis
Aquatic microorganisms
Biochemistry
Biosynthesis
Chemical synthesis
Composition
DGAT
Diacylglycerol O-acyltransferase
Diacylglycerol O-Acyltransferase - genetics
Diacylglycerol O-Acyltransferase - metabolism
Diatoms - enzymology
Diatoms - genetics
Diatoms - metabolism
Diglycerides
Diseases and pests
Docosahexaenoic acid
Eicosapentaenoic acid
Eicosapentaenoic Acid - biosynthesis
Eicosapentaenoic Acid - metabolism
Enzymes
Fatty acids
Fatty Acids, Omega-3 - biosynthesis
Fatty Acids, Omega-3 - metabolism
Fish oils
Gene expression
Genetic aspects
Genomes
Glycerol
Growth
Lipids
Marine fish
Metabolic Engineering
Microalgae
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana Benthamiana
Oilseed plants
Oilseeds
Omega-3 fatty acids
Optimization
Phaeodactylum tricornutum
Plankton
Plant Biotechnology
Plants, Genetically Modified
Polyunsaturated fatty acids
Preferences
Proteins
Tobacco
Triglycerides
Triglycerides - biosynthesis
Triglycerides - metabolism
Växtbioteknologi
Yeast
Yeasts
title Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization%20of%20acyl-CoA:diacylglycerol%20acyltransferase2%20from%20the%20diatom%20Phaeodactylum%20tricornutum%20and%20its%20potential%20effect%20on%20LC-PUFAs%20biosynthesis%20in%20planta&rft.jtitle=BMC%20plant%20biology&rft.au=Kli%C5%84ska-B%C4%85chor,%20Sylwia&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-04-23&rft.volume=24&rft.issue=1&rft.spage=309&rft.epage=309&rft.pages=309-309&rft.artnum=309&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-024-05014-7&rft_dat=%3Cgale_doaj_%3EA791178218%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-6bc626c6d873d7d3e658a9bfc99aeb10dc50d3ea995f5e0d561536b8f3abc01c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054184746&rft_id=info:pmid/38649801&rft_galeid=A791178218&rfr_iscdi=true