Loading…

Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism

The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor display...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2022-02, Vol.5 (1), p.120-120, Article 120
Main Authors: Saridakis, Emmanuel, Vishwakarma, Rishi, Lai-Kee-Him, Josephine, Martin, Kevin, Simon, Isabelle, Cohen-Gonsaud, Martin, Coste, Franck, Bron, Patrick, Margeat, Emmanuel, Boudvillain, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283
cites cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283
container_end_page 120
container_issue 1
container_start_page 120
container_title Communications biology
container_volume 5
creator Saridakis, Emmanuel
Vishwakarma, Rishi
Lai-Kee-Him, Josephine
Martin, Kevin
Simon, Isabelle
Cohen-Gonsaud, Martin
Coste, Franck
Bron, Patrick
Margeat, Emmanuel
Boudvillain, Marc
description The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of Mtb Rho at 3.3 Å resolution. The Mtb Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of Mtb Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of Mtb Rho and provides a framework for future antibiotic development. Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.
doi_str_mv 10.1038/s42003-022-03069-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_552c04a03b95461e80322dd146a3170a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_552c04a03b95461e80322dd146a3170a</doaj_id><sourcerecordid>2627479982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</originalsourceid><addsrcrecordid>eNp9kk1r3DAQhk1paUKaP9BDMfTSHpyOPizLl0JY0iawoVDas5Dl8a4WW9pK9sKe88erXSdpkkNPFjPPPGOJN8veE7ggwOSXyCkAK4DSAhiIuhCvslPK6rpggtPXT84n2XmMGwAgdV0Lxt9mJ6wkHBiXp9ndIux9cXWbxzFMZpwC5r7Lx6BdNMFuR-tdPmIYrNPHc6fN6EP-c-3zLvghv90b36QaBjsN-Tg1GMzU-2hjHnCHuo95Y83e9H7YG-tSMbVG7QzmA5q1djYO77I3XQLx_P57lv3-dvVrcV0sf3y_WVwuC1NWfCwYtG1Z1hVFYFi1ogMUDXTAdWsoMl2WVEiCrGorXpVQUV01jWxJyw0pkUp2lt3M3tbrjdoGO-iwV15bdSz4sFI6jNb0qJLLJDGwpi65ICiBUdq2hAvNSAU6ub7Oru3UDNgadOnN-mfS5x1n12rld0pKKqUgSfB5FqxfjF1fLtWhBqwUaVe9O7Cf7pcF_2fCOKrBRoN9rx36KSoqaLpyXUua0I8v0I2fgkvPeqSAcCqrRNGZMsHHGLB7_AMC6hAvNcdLpXipY7yUSEMfnl75ceQhTAlgMxBTy60w_Nv9H-1ftdPcXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627014287</pqid></control><display><type>article</type><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</creator><creatorcontrib>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</creatorcontrib><description>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of Mtb Rho at 3.3 Å resolution. The Mtb Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of Mtb Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of Mtb Rho and provides a framework for future antibiotic development. Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-022-03069-6</identifier><identifier>PMID: 35140348</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 45/22 ; 45/77 ; 631/45/173 ; 631/535/1258/1259 ; 82/16 ; 82/29 ; 82/83 ; Adenosine triphosphatase ; Antibiotics ; Bacteriology ; Bicozamycin ; Biochemistry, Molecular Biology ; Biology ; Biomedical and Life Sciences ; Conformation ; DNA helicase ; Genomes ; Life Sciences ; Methionine ; Microbiology and Parasitology ; Mycobacterium tuberculosis ; Rho protein ; Structural Biology ; Transcription termination ; Transcription termination factor RHO ; Tuberculosis</subject><ispartof>Communications biology, 2022-02, Vol.5 (1), p.120-120, Article 120</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</citedby><cites>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</cites><orcidid>0000-0001-6063-6420 ; 0000-0002-6398-9122 ; 0000-0002-7409-0470 ; 0000-0002-3354-9513 ; 0000-0002-0150-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627014287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35140348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03563179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saridakis, Emmanuel</creatorcontrib><creatorcontrib>Vishwakarma, Rishi</creatorcontrib><creatorcontrib>Lai-Kee-Him, Josephine</creatorcontrib><creatorcontrib>Martin, Kevin</creatorcontrib><creatorcontrib>Simon, Isabelle</creatorcontrib><creatorcontrib>Cohen-Gonsaud, Martin</creatorcontrib><creatorcontrib>Coste, Franck</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Margeat, Emmanuel</creatorcontrib><creatorcontrib>Boudvillain, Marc</creatorcontrib><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of Mtb Rho at 3.3 Å resolution. The Mtb Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of Mtb Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of Mtb Rho and provides a framework for future antibiotic development. Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</description><subject>101/28</subject><subject>45/22</subject><subject>45/77</subject><subject>631/45/173</subject><subject>631/535/1258/1259</subject><subject>82/16</subject><subject>82/29</subject><subject>82/83</subject><subject>Adenosine triphosphatase</subject><subject>Antibiotics</subject><subject>Bacteriology</subject><subject>Bicozamycin</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Conformation</subject><subject>DNA helicase</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Methionine</subject><subject>Microbiology and Parasitology</subject><subject>Mycobacterium tuberculosis</subject><subject>Rho protein</subject><subject>Structural Biology</subject><subject>Transcription termination</subject><subject>Transcription termination factor RHO</subject><subject>Tuberculosis</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1r3DAQhk1paUKaP9BDMfTSHpyOPizLl0JY0iawoVDas5Dl8a4WW9pK9sKe88erXSdpkkNPFjPPPGOJN8veE7ggwOSXyCkAK4DSAhiIuhCvslPK6rpggtPXT84n2XmMGwAgdV0Lxt9mJ6wkHBiXp9ndIux9cXWbxzFMZpwC5r7Lx6BdNMFuR-tdPmIYrNPHc6fN6EP-c-3zLvghv90b36QaBjsN-Tg1GMzU-2hjHnCHuo95Y83e9H7YG-tSMbVG7QzmA5q1djYO77I3XQLx_P57lv3-dvVrcV0sf3y_WVwuC1NWfCwYtG1Z1hVFYFi1ogMUDXTAdWsoMl2WVEiCrGorXpVQUV01jWxJyw0pkUp2lt3M3tbrjdoGO-iwV15bdSz4sFI6jNb0qJLLJDGwpi65ICiBUdq2hAvNSAU6ub7Oru3UDNgadOnN-mfS5x1n12rld0pKKqUgSfB5FqxfjF1fLtWhBqwUaVe9O7Cf7pcF_2fCOKrBRoN9rx36KSoqaLpyXUua0I8v0I2fgkvPeqSAcCqrRNGZMsHHGLB7_AMC6hAvNcdLpXipY7yUSEMfnl75ceQhTAlgMxBTy60w_Nv9H-1ftdPcXg</recordid><startdate>20220209</startdate><enddate>20220209</enddate><creator>Saridakis, Emmanuel</creator><creator>Vishwakarma, Rishi</creator><creator>Lai-Kee-Him, Josephine</creator><creator>Martin, Kevin</creator><creator>Simon, Isabelle</creator><creator>Cohen-Gonsaud, Martin</creator><creator>Coste, Franck</creator><creator>Bron, Patrick</creator><creator>Margeat, Emmanuel</creator><creator>Boudvillain, Marc</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6063-6420</orcidid><orcidid>https://orcid.org/0000-0002-6398-9122</orcidid><orcidid>https://orcid.org/0000-0002-7409-0470</orcidid><orcidid>https://orcid.org/0000-0002-3354-9513</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid></search><sort><creationdate>20220209</creationdate><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><author>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/28</topic><topic>45/22</topic><topic>45/77</topic><topic>631/45/173</topic><topic>631/535/1258/1259</topic><topic>82/16</topic><topic>82/29</topic><topic>82/83</topic><topic>Adenosine triphosphatase</topic><topic>Antibiotics</topic><topic>Bacteriology</topic><topic>Bicozamycin</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Conformation</topic><topic>DNA helicase</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Methionine</topic><topic>Microbiology and Parasitology</topic><topic>Mycobacterium tuberculosis</topic><topic>Rho protein</topic><topic>Structural Biology</topic><topic>Transcription termination</topic><topic>Transcription termination factor RHO</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saridakis, Emmanuel</creatorcontrib><creatorcontrib>Vishwakarma, Rishi</creatorcontrib><creatorcontrib>Lai-Kee-Him, Josephine</creatorcontrib><creatorcontrib>Martin, Kevin</creatorcontrib><creatorcontrib>Simon, Isabelle</creatorcontrib><creatorcontrib>Cohen-Gonsaud, Martin</creatorcontrib><creatorcontrib>Coste, Franck</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Margeat, Emmanuel</creatorcontrib><creatorcontrib>Boudvillain, Marc</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saridakis, Emmanuel</au><au>Vishwakarma, Rishi</au><au>Lai-Kee-Him, Josephine</au><au>Martin, Kevin</au><au>Simon, Isabelle</au><au>Cohen-Gonsaud, Martin</au><au>Coste, Franck</au><au>Bron, Patrick</au><au>Margeat, Emmanuel</au><au>Boudvillain, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2022-02-09</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>120</spage><epage>120</epage><pages>120-120</pages><artnum>120</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of Mtb Rho at 3.3 Å resolution. The Mtb Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of Mtb Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of Mtb Rho and provides a framework for future antibiotic development. Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35140348</pmid><doi>10.1038/s42003-022-03069-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6063-6420</orcidid><orcidid>https://orcid.org/0000-0002-6398-9122</orcidid><orcidid>https://orcid.org/0000-0002-7409-0470</orcidid><orcidid>https://orcid.org/0000-0002-3354-9513</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2022-02, Vol.5 (1), p.120-120, Article 120
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_552c04a03b95461e80322dd146a3170a
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
45/22
45/77
631/45/173
631/535/1258/1259
82/16
82/29
82/83
Adenosine triphosphatase
Antibiotics
Bacteriology
Bicozamycin
Biochemistry, Molecular Biology
Biology
Biomedical and Life Sciences
Conformation
DNA helicase
Genomes
Life Sciences
Methionine
Microbiology and Parasitology
Mycobacterium tuberculosis
Rho protein
Structural Biology
Transcription termination
Transcription termination factor RHO
Tuberculosis
title Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structure%20of%20transcription%20termination%20factor%20Rho%20from%20Mycobacterium%20tuberculosis%20reveals%20bicyclomycin%20resistance%20mechanism&rft.jtitle=Communications%20biology&rft.au=Saridakis,%20Emmanuel&rft.date=2022-02-09&rft.volume=5&rft.issue=1&rft.spage=120&rft.epage=120&rft.pages=120-120&rft.artnum=120&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-022-03069-6&rft_dat=%3Cproquest_doaj_%3E2627479982%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627014287&rft_id=info:pmid/35140348&rfr_iscdi=true