Loading…
Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism
The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [ Mtb Rho] factor display...
Saved in:
Published in: | Communications biology 2022-02, Vol.5 (1), p.120-120, Article 120 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283 |
---|---|
cites | cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283 |
container_end_page | 120 |
container_issue | 1 |
container_start_page | 120 |
container_title | Communications biology |
container_volume | 5 |
creator | Saridakis, Emmanuel Vishwakarma, Rishi Lai-Kee-Him, Josephine Martin, Kevin Simon, Isabelle Cohen-Gonsaud, Martin Coste, Franck Bron, Patrick Margeat, Emmanuel Boudvillain, Marc |
description | The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in
Mycobacterium tuberculosis
where
rho
gene inactivation leads to rapid death. Yet, the
M. tuberculosis
Rho [
Mtb
Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of
Mtb
Rho at 3.3 Å resolution. The
Mtb
Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of
Mtb
Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of
Mtb
Rho and provides a framework for future antibiotic development.
Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic. |
doi_str_mv | 10.1038/s42003-022-03069-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_552c04a03b95461e80322dd146a3170a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_552c04a03b95461e80322dd146a3170a</doaj_id><sourcerecordid>2627479982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</originalsourceid><addsrcrecordid>eNp9kk1r3DAQhk1paUKaP9BDMfTSHpyOPizLl0JY0iawoVDas5Dl8a4WW9pK9sKe88erXSdpkkNPFjPPPGOJN8veE7ggwOSXyCkAK4DSAhiIuhCvslPK6rpggtPXT84n2XmMGwAgdV0Lxt9mJ6wkHBiXp9ndIux9cXWbxzFMZpwC5r7Lx6BdNMFuR-tdPmIYrNPHc6fN6EP-c-3zLvghv90b36QaBjsN-Tg1GMzU-2hjHnCHuo95Y83e9H7YG-tSMbVG7QzmA5q1djYO77I3XQLx_P57lv3-dvVrcV0sf3y_WVwuC1NWfCwYtG1Z1hVFYFi1ogMUDXTAdWsoMl2WVEiCrGorXpVQUV01jWxJyw0pkUp2lt3M3tbrjdoGO-iwV15bdSz4sFI6jNb0qJLLJDGwpi65ICiBUdq2hAvNSAU6ub7Oru3UDNgadOnN-mfS5x1n12rld0pKKqUgSfB5FqxfjF1fLtWhBqwUaVe9O7Cf7pcF_2fCOKrBRoN9rx36KSoqaLpyXUua0I8v0I2fgkvPeqSAcCqrRNGZMsHHGLB7_AMC6hAvNcdLpXipY7yUSEMfnl75ceQhTAlgMxBTy60w_Nv9H-1ftdPcXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627014287</pqid></control><display><type>article</type><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</creator><creatorcontrib>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</creatorcontrib><description>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in
Mycobacterium tuberculosis
where
rho
gene inactivation leads to rapid death. Yet, the
M. tuberculosis
Rho [
Mtb
Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of
Mtb
Rho at 3.3 Å resolution. The
Mtb
Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of
Mtb
Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of
Mtb
Rho and provides a framework for future antibiotic development.
Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-022-03069-6</identifier><identifier>PMID: 35140348</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 45/22 ; 45/77 ; 631/45/173 ; 631/535/1258/1259 ; 82/16 ; 82/29 ; 82/83 ; Adenosine triphosphatase ; Antibiotics ; Bacteriology ; Bicozamycin ; Biochemistry, Molecular Biology ; Biology ; Biomedical and Life Sciences ; Conformation ; DNA helicase ; Genomes ; Life Sciences ; Methionine ; Microbiology and Parasitology ; Mycobacterium tuberculosis ; Rho protein ; Structural Biology ; Transcription termination ; Transcription termination factor RHO ; Tuberculosis</subject><ispartof>Communications biology, 2022-02, Vol.5 (1), p.120-120, Article 120</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</citedby><cites>FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</cites><orcidid>0000-0001-6063-6420 ; 0000-0002-6398-9122 ; 0000-0002-7409-0470 ; 0000-0002-3354-9513 ; 0000-0002-0150-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627014287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35140348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03563179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saridakis, Emmanuel</creatorcontrib><creatorcontrib>Vishwakarma, Rishi</creatorcontrib><creatorcontrib>Lai-Kee-Him, Josephine</creatorcontrib><creatorcontrib>Martin, Kevin</creatorcontrib><creatorcontrib>Simon, Isabelle</creatorcontrib><creatorcontrib>Cohen-Gonsaud, Martin</creatorcontrib><creatorcontrib>Coste, Franck</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Margeat, Emmanuel</creatorcontrib><creatorcontrib>Boudvillain, Marc</creatorcontrib><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in
Mycobacterium tuberculosis
where
rho
gene inactivation leads to rapid death. Yet, the
M. tuberculosis
Rho [
Mtb
Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of
Mtb
Rho at 3.3 Å resolution. The
Mtb
Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of
Mtb
Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of
Mtb
Rho and provides a framework for future antibiotic development.
Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</description><subject>101/28</subject><subject>45/22</subject><subject>45/77</subject><subject>631/45/173</subject><subject>631/535/1258/1259</subject><subject>82/16</subject><subject>82/29</subject><subject>82/83</subject><subject>Adenosine triphosphatase</subject><subject>Antibiotics</subject><subject>Bacteriology</subject><subject>Bicozamycin</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Conformation</subject><subject>DNA helicase</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Methionine</subject><subject>Microbiology and Parasitology</subject><subject>Mycobacterium tuberculosis</subject><subject>Rho protein</subject><subject>Structural Biology</subject><subject>Transcription termination</subject><subject>Transcription termination factor RHO</subject><subject>Tuberculosis</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1r3DAQhk1paUKaP9BDMfTSHpyOPizLl0JY0iawoVDas5Dl8a4WW9pK9sKe88erXSdpkkNPFjPPPGOJN8veE7ggwOSXyCkAK4DSAhiIuhCvslPK6rpggtPXT84n2XmMGwAgdV0Lxt9mJ6wkHBiXp9ndIux9cXWbxzFMZpwC5r7Lx6BdNMFuR-tdPmIYrNPHc6fN6EP-c-3zLvghv90b36QaBjsN-Tg1GMzU-2hjHnCHuo95Y83e9H7YG-tSMbVG7QzmA5q1djYO77I3XQLx_P57lv3-dvVrcV0sf3y_WVwuC1NWfCwYtG1Z1hVFYFi1ogMUDXTAdWsoMl2WVEiCrGorXpVQUV01jWxJyw0pkUp2lt3M3tbrjdoGO-iwV15bdSz4sFI6jNb0qJLLJDGwpi65ICiBUdq2hAvNSAU6ub7Oru3UDNgadOnN-mfS5x1n12rld0pKKqUgSfB5FqxfjF1fLtWhBqwUaVe9O7Cf7pcF_2fCOKrBRoN9rx36KSoqaLpyXUua0I8v0I2fgkvPeqSAcCqrRNGZMsHHGLB7_AMC6hAvNcdLpXipY7yUSEMfnl75ceQhTAlgMxBTy60w_Nv9H-1ftdPcXg</recordid><startdate>20220209</startdate><enddate>20220209</enddate><creator>Saridakis, Emmanuel</creator><creator>Vishwakarma, Rishi</creator><creator>Lai-Kee-Him, Josephine</creator><creator>Martin, Kevin</creator><creator>Simon, Isabelle</creator><creator>Cohen-Gonsaud, Martin</creator><creator>Coste, Franck</creator><creator>Bron, Patrick</creator><creator>Margeat, Emmanuel</creator><creator>Boudvillain, Marc</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6063-6420</orcidid><orcidid>https://orcid.org/0000-0002-6398-9122</orcidid><orcidid>https://orcid.org/0000-0002-7409-0470</orcidid><orcidid>https://orcid.org/0000-0002-3354-9513</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid></search><sort><creationdate>20220209</creationdate><title>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</title><author>Saridakis, Emmanuel ; Vishwakarma, Rishi ; Lai-Kee-Him, Josephine ; Martin, Kevin ; Simon, Isabelle ; Cohen-Gonsaud, Martin ; Coste, Franck ; Bron, Patrick ; Margeat, Emmanuel ; Boudvillain, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/28</topic><topic>45/22</topic><topic>45/77</topic><topic>631/45/173</topic><topic>631/535/1258/1259</topic><topic>82/16</topic><topic>82/29</topic><topic>82/83</topic><topic>Adenosine triphosphatase</topic><topic>Antibiotics</topic><topic>Bacteriology</topic><topic>Bicozamycin</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Conformation</topic><topic>DNA helicase</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Methionine</topic><topic>Microbiology and Parasitology</topic><topic>Mycobacterium tuberculosis</topic><topic>Rho protein</topic><topic>Structural Biology</topic><topic>Transcription termination</topic><topic>Transcription termination factor RHO</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saridakis, Emmanuel</creatorcontrib><creatorcontrib>Vishwakarma, Rishi</creatorcontrib><creatorcontrib>Lai-Kee-Him, Josephine</creatorcontrib><creatorcontrib>Martin, Kevin</creatorcontrib><creatorcontrib>Simon, Isabelle</creatorcontrib><creatorcontrib>Cohen-Gonsaud, Martin</creatorcontrib><creatorcontrib>Coste, Franck</creatorcontrib><creatorcontrib>Bron, Patrick</creatorcontrib><creatorcontrib>Margeat, Emmanuel</creatorcontrib><creatorcontrib>Boudvillain, Marc</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saridakis, Emmanuel</au><au>Vishwakarma, Rishi</au><au>Lai-Kee-Him, Josephine</au><au>Martin, Kevin</au><au>Simon, Isabelle</au><au>Cohen-Gonsaud, Martin</au><au>Coste, Franck</au><au>Bron, Patrick</au><au>Margeat, Emmanuel</au><au>Boudvillain, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2022-02-09</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>120</spage><epage>120</epage><pages>120-120</pages><artnum>120</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in
Mycobacterium tuberculosis
where
rho
gene inactivation leads to rapid death. Yet, the
M. tuberculosis
Rho [
Mtb
Rho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of
Mtb
Rho at 3.3 Å resolution. The
Mtb
Rho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of
Mtb
Rho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of
Mtb
Rho and provides a framework for future antibiotic development.
Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35140348</pmid><doi>10.1038/s42003-022-03069-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6063-6420</orcidid><orcidid>https://orcid.org/0000-0002-6398-9122</orcidid><orcidid>https://orcid.org/0000-0002-7409-0470</orcidid><orcidid>https://orcid.org/0000-0002-3354-9513</orcidid><orcidid>https://orcid.org/0000-0002-0150-9912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2022-02, Vol.5 (1), p.120-120, Article 120 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_552c04a03b95461e80322dd146a3170a |
source | Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/28 45/22 45/77 631/45/173 631/535/1258/1259 82/16 82/29 82/83 Adenosine triphosphatase Antibiotics Bacteriology Bicozamycin Biochemistry, Molecular Biology Biology Biomedical and Life Sciences Conformation DNA helicase Genomes Life Sciences Methionine Microbiology and Parasitology Mycobacterium tuberculosis Rho protein Structural Biology Transcription termination Transcription termination factor RHO Tuberculosis |
title | Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structure%20of%20transcription%20termination%20factor%20Rho%20from%20Mycobacterium%20tuberculosis%20reveals%20bicyclomycin%20resistance%20mechanism&rft.jtitle=Communications%20biology&rft.au=Saridakis,%20Emmanuel&rft.date=2022-02-09&rft.volume=5&rft.issue=1&rft.spage=120&rft.epage=120&rft.pages=120-120&rft.artnum=120&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-022-03069-6&rft_dat=%3Cproquest_doaj_%3E2627479982%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-30dd55972e03e7d6f0e6b0f04adc2e3a552681e37d7475072a7bb8d1d4c15e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627014287&rft_id=info:pmid/35140348&rfr_iscdi=true |