Loading…

Implications of ZnO Nanoparticles and S-Nitrosoglutathione on Nitric Oxide, Reactive Oxidative Species, Photosynthetic Pigments, and Ionomic Profile in Rice

Zinc is an important nutrient for several plants and humans. Nitric oxide (NO) is a free radical that is important to biological processes that mediate the growth and mitigation of biotic and abiotic stresses in plants. The present study investigated the enzymatic and photosynthetic profile and the...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2023-10, Vol.12 (10), p.1871
Main Authors: Lourenço, Isabella Martins, Freire, Bruna Moreira, Pieretti, Joana Claudio, Reis, Roberta Albino dos, Soares, Nicolas Martins, Santos, Marcelo da Luz, Batista, Bruno Lemos, Seabra, Amedea Barozzi, Lange, Camila Neves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zinc is an important nutrient for several plants and humans. Nitric oxide (NO) is a free radical that is important to biological processes that mediate the growth and mitigation of biotic and abiotic stresses in plants. The present study investigated the enzymatic and photosynthetic profile and the accumulation of macro- and microelements in rice plants (Oryza sativa L.) that received foliar treatments of zinc oxide nanoparticles (ZnO NPs), nitric oxide donor (GSNO), and the association of both (GSNO–ZnO NPs). Zinc concentration in rice husks increased by 66% and 68% in plants treated with ZnO NPs and GSNO–ZnO NPs, respectively. The GSNO treatment caused an increase of 25% in the Fe concentration in the rice grains. Only a small disturbance of the antioxidant system was observed, with increases in H2O2, S-NO, and NO2−, mainly in the group treated with GSNO–ZnO NPs; however, the disturbance did not affect the yield, the growth, or vital processes, such as as photosynthetic pigments production. There was an increase in chlorophyll B of 290% and an increase in chlorophyll A of 187% when ZnO NPs was applied. GSNO–ZnO NPs increased chlorophyll B by 345% and chlorophyll A by 345%, indicating that the treatments GSNO, ZnO NPs, and GSNO–ZnO NPs reduced possible oxidative stress and helped as protective treatments.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12101871