Loading…

Compaction and compressibility characteristics of snail shell ash and granulated blast furnace slag stabilized local bentonite for baseliner of landfill

This study comprehensively explores the compaction and compressibility characteristics of snail shell ash (SSA) and ground-granulated blast-furnace slag (GBFS) in stabilizing local bentonite for landfill baseliner applications. The untreated soil, with a liquid limit of 65%, plastic limit of 35%, an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-03, Vol.14 (1), p.7167-7167, Article 7167
Main Authors: Fadugba, Olaolu George, Adeniran, Julius Kayode, Alaneme, George Uwadiegwu, Oluyemi-Ayibiowu, Bamitale Dorcas, Omomomi, Oladapo Jayejeje, Adetukasi, Adesola Olayinka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study comprehensively explores the compaction and compressibility characteristics of snail shell ash (SSA) and ground-granulated blast-furnace slag (GBFS) in stabilizing local bentonite for landfill baseliner applications. The untreated soil, with a liquid limit of 65%, plastic limit of 35%, and plasticity index of 30%, exhibited optimal compaction at a moisture content of 32% and a maximum dry density of 1423 kg/m 3 . SSA revealed a dominant presence of 91.551 wt% CaO, while GBFS contained substantial 53.023 wt% SiO 2 . Treated samples with 20% GBFS and 5% SSA exhibited the highest maximum dry density (1561 kg/m 3 ) and optimal moisture content (13%), surpassing other mixtures. The 15% SSA-treated sample demonstrated superior strength enhancement, reaching an unconfined compressive strength of 272.61 kPa over 28 days, while the 10% GBFS-treated sample achieved 229.95 kPa. The combination of 15% SSA exhibited the highest shear strength (49 kPa) and elastic modulus (142 MPa), showcasing robust mechanical properties. Additionally, the 15% SSA sample displayed favourable hydraulic conductivity (5.57 × 10 –8  cm/s), outperforming other mixtures. Notably, the permeability test, a critical aspect of the study, was meticulously conducted in triplicate, ensuring the reliability and reproducibility of the reported hydraulic conductivity values. Treated samples with SSA and GBFS showed reduced compressibility compared to the control soil, with the 15% SSA-treated sample exhibiting a more consistent response to applied pressures. Scanning Electron Microscopy analysis revealed substantial composition changes in the 15% SSA mixture, suggesting its potential as an effective base liner in landfill systems. In conclusion, the 15% SSA sample demonstrated superior mechanical properties and hydraulic conductivity, presenting a promising choice for landfill liner applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-57924-z