Loading…
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The atte...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-01, Vol.22 (1), p.382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3 |
container_end_page | |
container_issue | 1 |
container_start_page | 382 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Ogawa, Naoki Maeda, Keisuke Ogawa, Takahiro Haseyama, Miki |
description | This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level. |
doi_str_mv | 10.3390/s22010382 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781291587</galeid><doaj_id>oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6</doaj_id><sourcerecordid>A781291587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</originalsourceid><addsrcrecordid>eNpdks1uEzEUhUcIREthwQugkdjAIsV_M2NvkEIoECnAhq5HHvtO6jCxg-1JxUPwztxkStQiL2wdfz7Xx75F8ZKSS84VeZcYI5RwyR4V51QwMZMoPL63PiuepbQhhHHO5dPijFeEKMXEefHnI2SILkSdXfDlCvYwlFcpu-0kfNAJbImLRfD7MIwHUQ_lNxjjccq3If4sr5Pz6wPSOwvewGx-qyOU85zBH22-grnR3qVt2YdYLn0fdcpxNHlEbOnTDsyBe1486fWQ4MXdfFFcf7r6sfgyW33_vFzMVzNTU5lnijJumaZVLZltVGMFs5R0GqymoAVYI40wquqNbYTqtOSC6sr0dSeUJJ3lF8Vy8rVBb9pdxLTxdxu0a49CiOtWx-zMAG1ViY5YWtesqQUl0EnNuq7HWkTU0tbo9X7y2o3dFktjYnyaB6YPd7y7addh30q8W1MxNHhzZxDDrxFSbrcuGRgG7SGMqWWYWVFSK4Lo6__QTRgjfshEMXSsBVKXE7XWGMD5PmBdg8PC1pngoXeozxtJmaKVbPDA2-mAiSGlCP3p9pS0hw5rTx2G7Kv7cU_kv5bifwG5Vc5N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618274964</pqid></control><display><type>article</type><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</creator><creatorcontrib>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</creatorcontrib><description>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22010382</identifier><identifier>PMID: 35009924</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>attention map ; confidence ; convolutional neural network ; deterioration level estimation ; Feature maps ; Infrastructure ; Infrastructure (Economics) ; infrastructure inspection ; Inspection ; Inspections ; Neural networks ; Neural Networks, Computer ; Research Design</subject><ispartof>Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.382</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</citedby><cites>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</cites><orcidid>0000-0002-3884-7325 ; 0000-0001-8039-3462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618274964/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618274964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35009924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Maeda, Keisuke</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</description><subject>attention map</subject><subject>confidence</subject><subject>convolutional neural network</subject><subject>deterioration level estimation</subject><subject>Feature maps</subject><subject>Infrastructure</subject><subject>Infrastructure (Economics)</subject><subject>infrastructure inspection</subject><subject>Inspection</subject><subject>Inspections</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Research Design</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEUhUcIREthwQugkdjAIsV_M2NvkEIoECnAhq5HHvtO6jCxg-1JxUPwztxkStQiL2wdfz7Xx75F8ZKSS84VeZcYI5RwyR4V51QwMZMoPL63PiuepbQhhHHO5dPijFeEKMXEefHnI2SILkSdXfDlCvYwlFcpu-0kfNAJbImLRfD7MIwHUQ_lNxjjccq3If4sr5Pz6wPSOwvewGx-qyOU85zBH22-grnR3qVt2YdYLn0fdcpxNHlEbOnTDsyBe1486fWQ4MXdfFFcf7r6sfgyW33_vFzMVzNTU5lnijJumaZVLZltVGMFs5R0GqymoAVYI40wquqNbYTqtOSC6sr0dSeUJJ3lF8Vy8rVBb9pdxLTxdxu0a49CiOtWx-zMAG1ViY5YWtesqQUl0EnNuq7HWkTU0tbo9X7y2o3dFktjYnyaB6YPd7y7addh30q8W1MxNHhzZxDDrxFSbrcuGRgG7SGMqWWYWVFSK4Lo6__QTRgjfshEMXSsBVKXE7XWGMD5PmBdg8PC1pngoXeozxtJmaKVbPDA2-mAiSGlCP3p9pS0hw5rTx2G7Kv7cU_kv5bifwG5Vc5N</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ogawa, Naoki</creator><creator>Maeda, Keisuke</creator><creator>Ogawa, Takahiro</creator><creator>Haseyama, Miki</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3884-7325</orcidid><orcidid>https://orcid.org/0000-0001-8039-3462</orcidid></search><sort><creationdate>20220101</creationdate><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><author>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention map</topic><topic>confidence</topic><topic>convolutional neural network</topic><topic>deterioration level estimation</topic><topic>Feature maps</topic><topic>Infrastructure</topic><topic>Infrastructure (Economics)</topic><topic>infrastructure inspection</topic><topic>Inspection</topic><topic>Inspections</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Maeda, Keisuke</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogawa, Naoki</au><au>Maeda, Keisuke</au><au>Ogawa, Takahiro</au><au>Haseyama, Miki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>382</spage><pages>382-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35009924</pmid><doi>10.3390/s22010382</doi><orcidid>https://orcid.org/0000-0002-3884-7325</orcidid><orcidid>https://orcid.org/0000-0001-8039-3462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.382 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | attention map confidence convolutional neural network deterioration level estimation Feature maps Infrastructure Infrastructure (Economics) infrastructure inspection Inspection Inspections Neural networks Neural Networks, Computer Research Design |
title | Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterioration%20Level%20Estimation%20Based%20on%20Convolutional%20Neural%20Network%20Using%20Confidence-Aware%20Attention%20Mechanism%20for%20Infrastructure%20Inspection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ogawa,%20Naoki&rft.date=2022-01-01&rft.volume=22&rft.issue=1&rft.spage=382&rft.pages=382-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22010382&rft_dat=%3Cgale_doaj_%3EA781291587%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618274964&rft_id=info:pmid/35009924&rft_galeid=A781291587&rfr_iscdi=true |