Loading…

Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection

This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The atte...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-01, Vol.22 (1), p.382
Main Authors: Ogawa, Naoki, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3
cites cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3
container_end_page
container_issue 1
container_start_page 382
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Ogawa, Naoki
Maeda, Keisuke
Ogawa, Takahiro
Haseyama, Miki
description This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.
doi_str_mv 10.3390/s22010382
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781291587</galeid><doaj_id>oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6</doaj_id><sourcerecordid>A781291587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</originalsourceid><addsrcrecordid>eNpdks1uEzEUhUcIREthwQugkdjAIsV_M2NvkEIoECnAhq5HHvtO6jCxg-1JxUPwztxkStQiL2wdfz7Xx75F8ZKSS84VeZcYI5RwyR4V51QwMZMoPL63PiuepbQhhHHO5dPijFeEKMXEefHnI2SILkSdXfDlCvYwlFcpu-0kfNAJbImLRfD7MIwHUQ_lNxjjccq3If4sr5Pz6wPSOwvewGx-qyOU85zBH22-grnR3qVt2YdYLn0fdcpxNHlEbOnTDsyBe1486fWQ4MXdfFFcf7r6sfgyW33_vFzMVzNTU5lnijJumaZVLZltVGMFs5R0GqymoAVYI40wquqNbYTqtOSC6sr0dSeUJJ3lF8Vy8rVBb9pdxLTxdxu0a49CiOtWx-zMAG1ViY5YWtesqQUl0EnNuq7HWkTU0tbo9X7y2o3dFktjYnyaB6YPd7y7addh30q8W1MxNHhzZxDDrxFSbrcuGRgG7SGMqWWYWVFSK4Lo6__QTRgjfshEMXSsBVKXE7XWGMD5PmBdg8PC1pngoXeozxtJmaKVbPDA2-mAiSGlCP3p9pS0hw5rTx2G7Kv7cU_kv5bifwG5Vc5N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618274964</pqid></control><display><type>article</type><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</creator><creatorcontrib>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</creatorcontrib><description>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22010382</identifier><identifier>PMID: 35009924</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>attention map ; confidence ; convolutional neural network ; deterioration level estimation ; Feature maps ; Infrastructure ; Infrastructure (Economics) ; infrastructure inspection ; Inspection ; Inspections ; Neural networks ; Neural Networks, Computer ; Research Design</subject><ispartof>Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.382</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</citedby><cites>FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</cites><orcidid>0000-0002-3884-7325 ; 0000-0001-8039-3462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618274964/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618274964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35009924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Maeda, Keisuke</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</description><subject>attention map</subject><subject>confidence</subject><subject>convolutional neural network</subject><subject>deterioration level estimation</subject><subject>Feature maps</subject><subject>Infrastructure</subject><subject>Infrastructure (Economics)</subject><subject>infrastructure inspection</subject><subject>Inspection</subject><subject>Inspections</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Research Design</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEUhUcIREthwQugkdjAIsV_M2NvkEIoECnAhq5HHvtO6jCxg-1JxUPwztxkStQiL2wdfz7Xx75F8ZKSS84VeZcYI5RwyR4V51QwMZMoPL63PiuepbQhhHHO5dPijFeEKMXEefHnI2SILkSdXfDlCvYwlFcpu-0kfNAJbImLRfD7MIwHUQ_lNxjjccq3If4sr5Pz6wPSOwvewGx-qyOU85zBH22-grnR3qVt2YdYLn0fdcpxNHlEbOnTDsyBe1486fWQ4MXdfFFcf7r6sfgyW33_vFzMVzNTU5lnijJumaZVLZltVGMFs5R0GqymoAVYI40wquqNbYTqtOSC6sr0dSeUJJ3lF8Vy8rVBb9pdxLTxdxu0a49CiOtWx-zMAG1ViY5YWtesqQUl0EnNuq7HWkTU0tbo9X7y2o3dFktjYnyaB6YPd7y7addh30q8W1MxNHhzZxDDrxFSbrcuGRgG7SGMqWWYWVFSK4Lo6__QTRgjfshEMXSsBVKXE7XWGMD5PmBdg8PC1pngoXeozxtJmaKVbPDA2-mAiSGlCP3p9pS0hw5rTx2G7Kv7cU_kv5bifwG5Vc5N</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ogawa, Naoki</creator><creator>Maeda, Keisuke</creator><creator>Ogawa, Takahiro</creator><creator>Haseyama, Miki</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3884-7325</orcidid><orcidid>https://orcid.org/0000-0001-8039-3462</orcidid></search><sort><creationdate>20220101</creationdate><title>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</title><author>Ogawa, Naoki ; Maeda, Keisuke ; Ogawa, Takahiro ; Haseyama, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention map</topic><topic>confidence</topic><topic>convolutional neural network</topic><topic>deterioration level estimation</topic><topic>Feature maps</topic><topic>Infrastructure</topic><topic>Infrastructure (Economics)</topic><topic>infrastructure inspection</topic><topic>Inspection</topic><topic>Inspections</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Maeda, Keisuke</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogawa, Naoki</au><au>Maeda, Keisuke</au><au>Ogawa, Takahiro</au><au>Haseyama, Miki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>382</spage><pages>382-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper presents deterioration level estimation based on convolutional neural networks using a confidence-aware attention mechanism for infrastructure inspection. Spatial attention mechanisms try to highlight the important regions in feature maps for estimation by using an attention map. The attention mechanism using an effective attention map can improve feature maps. However, the conventional attention mechanisms have a problem as they fail to highlight important regions for estimation when an ineffective attention map is mistakenly used. To solve the above problem, this paper introduces the confidence-aware attention mechanism that reduces the effect of ineffective attention maps by considering the confidence corresponding to the attention map. The confidence is calculated from the entropy of the estimated class probabilities when generating the attention map. Because the proposed method can effectively utilize the attention map by considering the confidence, it can focus more on the important regions in the final estimation. This is the most significant contribution of this paper. The experimental results using images from actual infrastructure inspections confirm the performance improvement of the proposed method in estimating the deterioration level.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35009924</pmid><doi>10.3390/s22010382</doi><orcidid>https://orcid.org/0000-0002-3884-7325</orcidid><orcidid>https://orcid.org/0000-0001-8039-3462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.382
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_554b0d166276410eb8a2bbfaed0468d6
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects attention map
confidence
convolutional neural network
deterioration level estimation
Feature maps
Infrastructure
Infrastructure (Economics)
infrastructure inspection
Inspection
Inspections
Neural networks
Neural Networks, Computer
Research Design
title Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterioration%20Level%20Estimation%20Based%20on%20Convolutional%20Neural%20Network%20Using%20Confidence-Aware%20Attention%20Mechanism%20for%20Infrastructure%20Inspection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ogawa,%20Naoki&rft.date=2022-01-01&rft.volume=22&rft.issue=1&rft.spage=382&rft.pages=382-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22010382&rft_dat=%3Cgale_doaj_%3EA781291587%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-9123d2a15682d797d42d10baeda1ea4edc8c4c95fcd749ba8341a5cf6b4980bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618274964&rft_id=info:pmid/35009924&rft_galeid=A781291587&rfr_iscdi=true