Loading…
The Flavoproteome of the Model Plant Arabidopsis thaliana
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of Several computational approaches were applied to gr...
Saved in:
Published in: | International journal of molecular sciences 2020-07, Vol.21 (15), p.5371 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of
Several computational approaches were applied to group the entire flavoproteome according to (i) different catalytic reactions in enzyme classes, (ii) the localization in subcellular compartments, (iii) different protein families and subclasses, and (iv) their classification to structural properties. Subsequently, the physiological significance of several of the larger flavoprotein families was highlighted. It is conclusive that plants, such as
, use many flavoenzymes for plant-specific and pivotal metabolic activities during development and for signal transduction pathways in response to biotic and abiotic stress. Thereby, often two up to several homologous genes are found encoding proteins with high protein similarity. It is proposed that these gene families for flavoproteins reflect presumably their need for differential transcriptional control or the expression of similar proteins with modified flavin-binding properties or catalytic activities. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21155371 |