Loading…
Twisted moiré conductive thermal metasurface
Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field—twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses th...
Saved in:
Published in: | Nature communications 2024-03, Vol.15 (1), p.2169-2169, Article 2169 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field—twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses the dispersion like photons nor carries the band structure as electrons, the real magic angle in electrons or photons is ill-defined for heat diffusion, making it elusive to understand or design any thermal analogue of magic angle. Here, we introduce and experimentally validate the
twisted thermotics
in a twisted diffusion system by judiciously tailoring thermal coupling, in which twisting an analog thermal magic angle would result in the function switching from cloaking to concentration. Our work provides insights for the tunable heat diffusion control, and opens up an unexpected branch for twistronics -- twisted thermotics, paving the way towards field manipulation in twisted configurations including but not limited to fluids.
Authors control heat transfer through twisting moiré conductive thermal metasurface, showcasing the potential for manipulating thermal conductivity and temperature gradients with imitated magic angles, thereby realizing multifunctional thermal metadevices. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-46247-2 |