Loading…

Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations

We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (sate...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2011-01, Vol.11 (10), p.4705-4723
Main Authors: Hooghiemstra, P. B., Krol, M. C., Meirink, J. F., Bergamaschi, P., van der Werf, G. R., Novelli, P. C., Aben, I., Röckmann, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083
cites cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083
container_end_page 4723
container_issue 10
container_start_page 4705
container_title Atmospheric chemistry and physics
container_volume 11
creator Hooghiemstra, P. B.
Krol, M. C.
Meirink, J. F.
Bergamaschi, P.
van der Werf, G. R.
Novelli, P. C.
Aben, I.
Röckmann, T.
description We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.
doi_str_mv 10.5194/acp-11-4705-2011
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e</doaj_id><sourcerecordid>2365133241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</originalsourceid><addsrcrecordid>eNpNUcuO1DAQjBBILAt3jhb3gO34FW5oBMtKK80FzlbHcUYeEju4kx0tH8B340wQ4tTtdlWpu6qq3jL6XrJWfAA314zVQlNZc8rYs-qGKUNr3XDx_L_-ZfUK8Uwpl5SJm-r3cV7CFH6FeCKnMXUwksOR-CkghhSJx_ILi0ey4gYBMqQ1132YfNwABf4IOcCy9z0sQKBQpzBeZwSfcPETgdgTXPMAzpPol0vKP0jq0OfHKwxfVy8GGNG_-Vtvq-9fPn87fK0fjnf3h08PtROtXGrReDOInndMa6pbJlrPhWpNp5zqtZLKDQCKcTkYoxvtBBgQg5ZQ3pRR09xW97tun-Bs51yOy082QbDXQconC3kJbvRWSiOaVjlPWxBeKuilkrQD17WKK-2L1sdd6wInH4s7PtoI2QW8Co6hy5v4Zc02jluZ1w6tYJoLUcjvdvKc08-12GzPxdjiIVqj2nKZ5LqA6A5yOSFmP_zbmFG7pW5L6pYxu6Vut9SbP7ldpD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869914527</pqid></control><display><type>article</type><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</creator><creatorcontrib>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</creatorcontrib><description>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-11-4705-2011</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>adjoint ; algorithm ; asia ; carbon-monoxide ; fire emissions ; forest ; inversion ; model tm5 ; mopitt ; tropospheric chemistry</subject><ispartof>Atmospheric chemistry and physics, 2011-01, Vol.11 (10), p.4705-4723</ispartof><rights>Copyright Copernicus GmbH 2011</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</citedby><cites>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/869914527/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/869914527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hooghiemstra, P. B.</creatorcontrib><creatorcontrib>Krol, M. C.</creatorcontrib><creatorcontrib>Meirink, J. F.</creatorcontrib><creatorcontrib>Bergamaschi, P.</creatorcontrib><creatorcontrib>van der Werf, G. R.</creatorcontrib><creatorcontrib>Novelli, P. C.</creatorcontrib><creatorcontrib>Aben, I.</creatorcontrib><creatorcontrib>Röckmann, T.</creatorcontrib><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><title>Atmospheric chemistry and physics</title><description>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</description><subject>adjoint</subject><subject>algorithm</subject><subject>asia</subject><subject>carbon-monoxide</subject><subject>fire emissions</subject><subject>forest</subject><subject>inversion</subject><subject>model tm5</subject><subject>mopitt</subject><subject>tropospheric chemistry</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcuO1DAQjBBILAt3jhb3gO34FW5oBMtKK80FzlbHcUYeEju4kx0tH8B340wQ4tTtdlWpu6qq3jL6XrJWfAA314zVQlNZc8rYs-qGKUNr3XDx_L_-ZfUK8Uwpl5SJm-r3cV7CFH6FeCKnMXUwksOR-CkghhSJx_ILi0ey4gYBMqQ1132YfNwABf4IOcCy9z0sQKBQpzBeZwSfcPETgdgTXPMAzpPol0vKP0jq0OfHKwxfVy8GGNG_-Vtvq-9fPn87fK0fjnf3h08PtROtXGrReDOInndMa6pbJlrPhWpNp5zqtZLKDQCKcTkYoxvtBBgQg5ZQ3pRR09xW97tun-Bs51yOy082QbDXQconC3kJbvRWSiOaVjlPWxBeKuilkrQD17WKK-2L1sdd6wInH4s7PtoI2QW8Co6hy5v4Zc02jluZ1w6tYJoLUcjvdvKc08-12GzPxdjiIVqj2nKZ5LqA6A5yOSFmP_zbmFG7pW5L6pYxu6Vut9SbP7ldpD0</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hooghiemstra, P. B.</creator><creator>Krol, M. C.</creator><creator>Meirink, J. F.</creator><creator>Bergamaschi, P.</creator><creator>van der Werf, G. R.</creator><creator>Novelli, P. C.</creator><creator>Aben, I.</creator><creator>Röckmann, T.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20110101</creationdate><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><author>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adjoint</topic><topic>algorithm</topic><topic>asia</topic><topic>carbon-monoxide</topic><topic>fire emissions</topic><topic>forest</topic><topic>inversion</topic><topic>model tm5</topic><topic>mopitt</topic><topic>tropospheric chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooghiemstra, P. B.</creatorcontrib><creatorcontrib>Krol, M. C.</creatorcontrib><creatorcontrib>Meirink, J. F.</creatorcontrib><creatorcontrib>Bergamaschi, P.</creatorcontrib><creatorcontrib>van der Werf, G. R.</creatorcontrib><creatorcontrib>Novelli, P. C.</creatorcontrib><creatorcontrib>Aben, I.</creatorcontrib><creatorcontrib>Röckmann, T.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooghiemstra, P. B.</au><au>Krol, M. C.</au><au>Meirink, J. F.</au><au>Bergamaschi, P.</au><au>van der Werf, G. R.</au><au>Novelli, P. C.</au><au>Aben, I.</au><au>Röckmann, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>11</volume><issue>10</issue><spage>4705</spage><epage>4723</epage><pages>4705-4723</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-11-4705-2011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2011-01, Vol.11 (10), p.4705-4723
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects adjoint
algorithm
asia
carbon-monoxide
fire emissions
forest
inversion
model tm5
mopitt
tropospheric chemistry
title Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20global%20CO%20emission%20estimates%20using%20a%20four-dimensional%20variational%20data%20assimilation%20system%20and%20surface%20network%20observations&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Hooghiemstra,%20P.%20B.&rft.date=2011-01-01&rft.volume=11&rft.issue=10&rft.spage=4705&rft.epage=4723&rft.pages=4705-4723&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-11-4705-2011&rft_dat=%3Cproquest_doaj_%3E2365133241%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869914527&rft_id=info:pmid/&rfr_iscdi=true