Loading…
Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations
We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (sate...
Saved in:
Published in: | Atmospheric chemistry and physics 2011-01, Vol.11 (10), p.4705-4723 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083 |
container_end_page | 4723 |
container_issue | 10 |
container_start_page | 4705 |
container_title | Atmospheric chemistry and physics |
container_volume | 11 |
creator | Hooghiemstra, P. B. Krol, M. C. Meirink, J. F. Bergamaschi, P. van der Werf, G. R. Novelli, P. C. Aben, I. Röckmann, T. |
description | We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. |
doi_str_mv | 10.5194/acp-11-4705-2011 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e</doaj_id><sourcerecordid>2365133241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</originalsourceid><addsrcrecordid>eNpNUcuO1DAQjBBILAt3jhb3gO34FW5oBMtKK80FzlbHcUYeEju4kx0tH8B340wQ4tTtdlWpu6qq3jL6XrJWfAA314zVQlNZc8rYs-qGKUNr3XDx_L_-ZfUK8Uwpl5SJm-r3cV7CFH6FeCKnMXUwksOR-CkghhSJx_ILi0ey4gYBMqQ1132YfNwABf4IOcCy9z0sQKBQpzBeZwSfcPETgdgTXPMAzpPol0vKP0jq0OfHKwxfVy8GGNG_-Vtvq-9fPn87fK0fjnf3h08PtROtXGrReDOInndMa6pbJlrPhWpNp5zqtZLKDQCKcTkYoxvtBBgQg5ZQ3pRR09xW97tun-Bs51yOy082QbDXQconC3kJbvRWSiOaVjlPWxBeKuilkrQD17WKK-2L1sdd6wInH4s7PtoI2QW8Co6hy5v4Zc02jluZ1w6tYJoLUcjvdvKc08-12GzPxdjiIVqj2nKZ5LqA6A5yOSFmP_zbmFG7pW5L6pYxu6Vut9SbP7ldpD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869914527</pqid></control><display><type>article</type><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</creator><creatorcontrib>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</creatorcontrib><description>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-11-4705-2011</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>adjoint ; algorithm ; asia ; carbon-monoxide ; fire emissions ; forest ; inversion ; model tm5 ; mopitt ; tropospheric chemistry</subject><ispartof>Atmospheric chemistry and physics, 2011-01, Vol.11 (10), p.4705-4723</ispartof><rights>Copyright Copernicus GmbH 2011</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</citedby><cites>FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/869914527/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/869914527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hooghiemstra, P. B.</creatorcontrib><creatorcontrib>Krol, M. C.</creatorcontrib><creatorcontrib>Meirink, J. F.</creatorcontrib><creatorcontrib>Bergamaschi, P.</creatorcontrib><creatorcontrib>van der Werf, G. R.</creatorcontrib><creatorcontrib>Novelli, P. C.</creatorcontrib><creatorcontrib>Aben, I.</creatorcontrib><creatorcontrib>Röckmann, T.</creatorcontrib><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><title>Atmospheric chemistry and physics</title><description>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</description><subject>adjoint</subject><subject>algorithm</subject><subject>asia</subject><subject>carbon-monoxide</subject><subject>fire emissions</subject><subject>forest</subject><subject>inversion</subject><subject>model tm5</subject><subject>mopitt</subject><subject>tropospheric chemistry</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcuO1DAQjBBILAt3jhb3gO34FW5oBMtKK80FzlbHcUYeEju4kx0tH8B340wQ4tTtdlWpu6qq3jL6XrJWfAA314zVQlNZc8rYs-qGKUNr3XDx_L_-ZfUK8Uwpl5SJm-r3cV7CFH6FeCKnMXUwksOR-CkghhSJx_ILi0ey4gYBMqQ1132YfNwABf4IOcCy9z0sQKBQpzBeZwSfcPETgdgTXPMAzpPol0vKP0jq0OfHKwxfVy8GGNG_-Vtvq-9fPn87fK0fjnf3h08PtROtXGrReDOInndMa6pbJlrPhWpNp5zqtZLKDQCKcTkYoxvtBBgQg5ZQ3pRR09xW97tun-Bs51yOy082QbDXQconC3kJbvRWSiOaVjlPWxBeKuilkrQD17WKK-2L1sdd6wInH4s7PtoI2QW8Co6hy5v4Zc02jluZ1w6tYJoLUcjvdvKc08-12GzPxdjiIVqj2nKZ5LqA6A5yOSFmP_zbmFG7pW5L6pYxu6Vut9SbP7ldpD0</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hooghiemstra, P. B.</creator><creator>Krol, M. C.</creator><creator>Meirink, J. F.</creator><creator>Bergamaschi, P.</creator><creator>van der Werf, G. R.</creator><creator>Novelli, P. C.</creator><creator>Aben, I.</creator><creator>Röckmann, T.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20110101</creationdate><title>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</title><author>Hooghiemstra, P. B. ; Krol, M. C. ; Meirink, J. F. ; Bergamaschi, P. ; van der Werf, G. R. ; Novelli, P. C. ; Aben, I. ; Röckmann, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adjoint</topic><topic>algorithm</topic><topic>asia</topic><topic>carbon-monoxide</topic><topic>fire emissions</topic><topic>forest</topic><topic>inversion</topic><topic>model tm5</topic><topic>mopitt</topic><topic>tropospheric chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooghiemstra, P. B.</creatorcontrib><creatorcontrib>Krol, M. C.</creatorcontrib><creatorcontrib>Meirink, J. F.</creatorcontrib><creatorcontrib>Bergamaschi, P.</creatorcontrib><creatorcontrib>van der Werf, G. R.</creatorcontrib><creatorcontrib>Novelli, P. C.</creatorcontrib><creatorcontrib>Aben, I.</creatorcontrib><creatorcontrib>Röckmann, T.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooghiemstra, P. B.</au><au>Krol, M. C.</au><au>Meirink, J. F.</au><au>Bergamaschi, P.</au><au>van der Werf, G. R.</au><au>Novelli, P. C.</au><au>Aben, I.</au><au>Röckmann, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>11</volume><issue>10</issue><spage>4705</spage><epage>4723</epage><pages>4705-4723</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large (satellite) datasets, but in the current study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is capable to adjust the emissions in such a way that the posterior simulation reproduces background CO mixing ratios and large-scale pollution events at background stations. Uncertainty reduction up to 60 % in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, with the limited amount of data from the surface network, the system becomes data sparse resulting in a large solution space. Sensitivity studies have shown that model uncertainties (e.g., vertical distribution of biomass burning emissions and the OH field) and the prior inventories used, influence the inferred emission estimates. Also, since the observations only constrain total CO emissions, the 4D-VAR system has difficulties in separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument version 4 (V4) shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10 %. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-11-4705-2011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2011-01, Vol.11 (10), p.4705-4723 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5584396ce09a4e56ad5650bacb96267e |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | adjoint algorithm asia carbon-monoxide fire emissions forest inversion model tm5 mopitt tropospheric chemistry |
title | Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20global%20CO%20emission%20estimates%20using%20a%20four-dimensional%20variational%20data%20assimilation%20system%20and%20surface%20network%20observations&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Hooghiemstra,%20P.%20B.&rft.date=2011-01-01&rft.volume=11&rft.issue=10&rft.spage=4705&rft.epage=4723&rft.pages=4705-4723&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-11-4705-2011&rft_dat=%3Cproquest_doaj_%3E2365133241%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-43e8f4d2b177079149e24698b6c6d7656cfaa6125f88737c4a8a4f75af8801083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869914527&rft_id=info:pmid/&rfr_iscdi=true |