Loading…

Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales

Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, l...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2022-11, Vol.16, p.1032696-1032696
Main Authors: Wang, Zhongpeng, Liu, Zhaoyang, Chen, Long, Liu, Shuang, Xu, Minpeng, He, Feng, Ming, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63
cites cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63
container_end_page 1032696
container_issue
container_start_page 1032696
container_title Frontiers in neuroscience
container_volume 16
creator Wang, Zhongpeng
Liu, Zhaoyang
Chen, Long
Liu, Shuang
Xu, Minpeng
He, Feng
Ming, Dong
description Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.
doi_str_mv 10.3389/fnins.2022.1032696
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55866c06402648daada3a210e6085f22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55866c06402648daada3a210e6085f22</doaj_id><sourcerecordid>2737595081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</originalsourceid><addsrcrecordid>eNpdkk-LFDEQxRtRcF39Ap4avHiZMV3p_OmLIIurCwuCKHgL1enqmYzpZEy6d_Hbm94ZxPWSFFW_PIqXV1WvG7blXHfvxuBC3gID2DaMg-zkk-qikRI2reA_nv5TP69e5HxgTIJu4aK6_0p5dmG3yTPOVJMnO6dIwdJxjz7uEk715GyKp_kca7pDv6z1sfTKsxR_Up1oj73zrkAuhhrDUGPO0boVvHfzvrbeBWfR17kclF9Wz0b0mV6d78vq-_XHb1efN7dfPt1cfbjd2FbxeSOEFGM3gpWMN6C5HlgDrOOCEfRKoBpwVD2i6jR2epBDD51FwBGLFRYlv6xuTrpDxIM5Jjdh-m0iOvPQiGlnMM3OejJCaCktky0D2eoBcUCO0DCSTIsRoGi9P2kdl36iwVKYE_pHoo8nwe3NLt6ZTjVC8XWZt2eBFH8txXgzuWzJewwUl2xAtYoxraQo6Jv_0ENcUihWFYor0Qmmm0LBiVo_KCca_y7TMLMGwzwEw6zBMOdg8D94gbBk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737595081</pqid></control><display><type>article</type><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><source>PubMed Central</source><creator>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</creator><creatorcontrib>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</creatorcontrib><description>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</description><identifier>ISSN: 1662-453X</identifier><identifier>ISSN: 1662-4548</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2022.1032696</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Activities of daily living ; Algorithms ; Alzheimer's disease ; clinical scales ; Clustering ; Dyskinesia ; EEG ; Electrodes ; Electroencephalography ; microstate analysis ; Movement disorders ; Neuroscience ; Patients ; post-stroke ; Rehabilitation ; rehabilitation assessment ; resting-state EEG ; Statistical analysis ; Stroke ; Topography</subject><ispartof>Frontiers in neuroscience, 2022-11, Vol.16, p.1032696-1032696</ispartof><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022 Wang, Liu, Chen, Liu, Xu, He and Ming. 2022 Wang, Liu, Chen, Liu, Xu, He and Ming</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</citedby><cites>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Zhongpeng</creatorcontrib><creatorcontrib>Liu, Zhaoyang</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><title>Frontiers in neuroscience</title><description>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</description><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>clinical scales</subject><subject>Clustering</subject><subject>Dyskinesia</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>microstate analysis</subject><subject>Movement disorders</subject><subject>Neuroscience</subject><subject>Patients</subject><subject>post-stroke</subject><subject>Rehabilitation</subject><subject>rehabilitation assessment</subject><subject>resting-state EEG</subject><subject>Statistical analysis</subject><subject>Stroke</subject><subject>Topography</subject><issn>1662-453X</issn><issn>1662-4548</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk-LFDEQxRtRcF39Ap4avHiZMV3p_OmLIIurCwuCKHgL1enqmYzpZEy6d_Hbm94ZxPWSFFW_PIqXV1WvG7blXHfvxuBC3gID2DaMg-zkk-qikRI2reA_nv5TP69e5HxgTIJu4aK6_0p5dmG3yTPOVJMnO6dIwdJxjz7uEk715GyKp_kca7pDv6z1sfTKsxR_Up1oj73zrkAuhhrDUGPO0boVvHfzvrbeBWfR17kclF9Wz0b0mV6d78vq-_XHb1efN7dfPt1cfbjd2FbxeSOEFGM3gpWMN6C5HlgDrOOCEfRKoBpwVD2i6jR2epBDD51FwBGLFRYlv6xuTrpDxIM5Jjdh-m0iOvPQiGlnMM3OejJCaCktky0D2eoBcUCO0DCSTIsRoGi9P2kdl36iwVKYE_pHoo8nwe3NLt6ZTjVC8XWZt2eBFH8txXgzuWzJewwUl2xAtYoxraQo6Jv_0ENcUihWFYor0Qmmm0LBiVo_KCca_y7TMLMGwzwEw6zBMOdg8D94gbBk</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>Wang, Zhongpeng</creator><creator>Liu, Zhaoyang</creator><creator>Chen, Long</creator><creator>Liu, Shuang</creator><creator>Xu, Minpeng</creator><creator>He, Feng</creator><creator>Ming, Dong</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221118</creationdate><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><author>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>clinical scales</topic><topic>Clustering</topic><topic>Dyskinesia</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>microstate analysis</topic><topic>Movement disorders</topic><topic>Neuroscience</topic><topic>Patients</topic><topic>post-stroke</topic><topic>Rehabilitation</topic><topic>rehabilitation assessment</topic><topic>resting-state EEG</topic><topic>Statistical analysis</topic><topic>Stroke</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhongpeng</creatorcontrib><creatorcontrib>Liu, Zhaoyang</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhongpeng</au><au>Liu, Zhaoyang</au><au>Chen, Long</au><au>Liu, Shuang</au><au>Xu, Minpeng</au><au>He, Feng</au><au>Ming, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</atitle><jtitle>Frontiers in neuroscience</jtitle><date>2022-11-18</date><risdate>2022</risdate><volume>16</volume><spage>1032696</spage><epage>1032696</epage><pages>1032696-1032696</pages><issn>1662-453X</issn><issn>1662-4548</issn><eissn>1662-453X</eissn><abstract>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fnins.2022.1032696</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-453X
ispartof Frontiers in neuroscience, 2022-11, Vol.16, p.1032696-1032696
issn 1662-453X
1662-4548
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_55866c06402648daada3a210e6085f22
source PubMed Central
subjects Activities of daily living
Algorithms
Alzheimer's disease
clinical scales
Clustering
Dyskinesia
EEG
Electrodes
Electroencephalography
microstate analysis
Movement disorders
Neuroscience
Patients
post-stroke
Rehabilitation
rehabilitation assessment
resting-state EEG
Statistical analysis
Stroke
Topography
title Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting-state%20electroencephalogram%20microstate%20to%20evaluate%20post-stroke%20rehabilitation%20and%20associate%20with%20clinical%20scales&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Wang,%20Zhongpeng&rft.date=2022-11-18&rft.volume=16&rft.spage=1032696&rft.epage=1032696&rft.pages=1032696-1032696&rft.issn=1662-453X&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2022.1032696&rft_dat=%3Cproquest_doaj_%3E2737595081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737595081&rft_id=info:pmid/&rfr_iscdi=true