Loading…
Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales
Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, l...
Saved in:
Published in: | Frontiers in neuroscience 2022-11, Vol.16, p.1032696-1032696 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63 |
container_end_page | 1032696 |
container_issue | |
container_start_page | 1032696 |
container_title | Frontiers in neuroscience |
container_volume | 16 |
creator | Wang, Zhongpeng Liu, Zhaoyang Chen, Long Liu, Shuang Xu, Minpeng He, Feng Ming, Dong |
description | Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker. |
doi_str_mv | 10.3389/fnins.2022.1032696 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55866c06402648daada3a210e6085f22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55866c06402648daada3a210e6085f22</doaj_id><sourcerecordid>2737595081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</originalsourceid><addsrcrecordid>eNpdkk-LFDEQxRtRcF39Ap4avHiZMV3p_OmLIIurCwuCKHgL1enqmYzpZEy6d_Hbm94ZxPWSFFW_PIqXV1WvG7blXHfvxuBC3gID2DaMg-zkk-qikRI2reA_nv5TP69e5HxgTIJu4aK6_0p5dmG3yTPOVJMnO6dIwdJxjz7uEk715GyKp_kca7pDv6z1sfTKsxR_Up1oj73zrkAuhhrDUGPO0boVvHfzvrbeBWfR17kclF9Wz0b0mV6d78vq-_XHb1efN7dfPt1cfbjd2FbxeSOEFGM3gpWMN6C5HlgDrOOCEfRKoBpwVD2i6jR2epBDD51FwBGLFRYlv6xuTrpDxIM5Jjdh-m0iOvPQiGlnMM3OejJCaCktky0D2eoBcUCO0DCSTIsRoGi9P2kdl36iwVKYE_pHoo8nwe3NLt6ZTjVC8XWZt2eBFH8txXgzuWzJewwUl2xAtYoxraQo6Jv_0ENcUihWFYor0Qmmm0LBiVo_KCca_y7TMLMGwzwEw6zBMOdg8D94gbBk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737595081</pqid></control><display><type>article</type><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><source>PubMed Central</source><creator>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</creator><creatorcontrib>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</creatorcontrib><description>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</description><identifier>ISSN: 1662-453X</identifier><identifier>ISSN: 1662-4548</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2022.1032696</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Activities of daily living ; Algorithms ; Alzheimer's disease ; clinical scales ; Clustering ; Dyskinesia ; EEG ; Electrodes ; Electroencephalography ; microstate analysis ; Movement disorders ; Neuroscience ; Patients ; post-stroke ; Rehabilitation ; rehabilitation assessment ; resting-state EEG ; Statistical analysis ; Stroke ; Topography</subject><ispartof>Frontiers in neuroscience, 2022-11, Vol.16, p.1032696-1032696</ispartof><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022 Wang, Liu, Chen, Liu, Xu, He and Ming. 2022 Wang, Liu, Chen, Liu, Xu, He and Ming</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</citedby><cites>FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Zhongpeng</creatorcontrib><creatorcontrib>Liu, Zhaoyang</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><title>Frontiers in neuroscience</title><description>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</description><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>clinical scales</subject><subject>Clustering</subject><subject>Dyskinesia</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>microstate analysis</subject><subject>Movement disorders</subject><subject>Neuroscience</subject><subject>Patients</subject><subject>post-stroke</subject><subject>Rehabilitation</subject><subject>rehabilitation assessment</subject><subject>resting-state EEG</subject><subject>Statistical analysis</subject><subject>Stroke</subject><subject>Topography</subject><issn>1662-453X</issn><issn>1662-4548</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk-LFDEQxRtRcF39Ap4avHiZMV3p_OmLIIurCwuCKHgL1enqmYzpZEy6d_Hbm94ZxPWSFFW_PIqXV1WvG7blXHfvxuBC3gID2DaMg-zkk-qikRI2reA_nv5TP69e5HxgTIJu4aK6_0p5dmG3yTPOVJMnO6dIwdJxjz7uEk715GyKp_kca7pDv6z1sfTKsxR_Up1oj73zrkAuhhrDUGPO0boVvHfzvrbeBWfR17kclF9Wz0b0mV6d78vq-_XHb1efN7dfPt1cfbjd2FbxeSOEFGM3gpWMN6C5HlgDrOOCEfRKoBpwVD2i6jR2epBDD51FwBGLFRYlv6xuTrpDxIM5Jjdh-m0iOvPQiGlnMM3OejJCaCktky0D2eoBcUCO0DCSTIsRoGi9P2kdl36iwVKYE_pHoo8nwe3NLt6ZTjVC8XWZt2eBFH8txXgzuWzJewwUl2xAtYoxraQo6Jv_0ENcUihWFYor0Qmmm0LBiVo_KCca_y7TMLMGwzwEw6zBMOdg8D94gbBk</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>Wang, Zhongpeng</creator><creator>Liu, Zhaoyang</creator><creator>Chen, Long</creator><creator>Liu, Shuang</creator><creator>Xu, Minpeng</creator><creator>He, Feng</creator><creator>Ming, Dong</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221118</creationdate><title>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</title><author>Wang, Zhongpeng ; Liu, Zhaoyang ; Chen, Long ; Liu, Shuang ; Xu, Minpeng ; He, Feng ; Ming, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>clinical scales</topic><topic>Clustering</topic><topic>Dyskinesia</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>microstate analysis</topic><topic>Movement disorders</topic><topic>Neuroscience</topic><topic>Patients</topic><topic>post-stroke</topic><topic>Rehabilitation</topic><topic>rehabilitation assessment</topic><topic>resting-state EEG</topic><topic>Statistical analysis</topic><topic>Stroke</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhongpeng</creatorcontrib><creatorcontrib>Liu, Zhaoyang</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhongpeng</au><au>Liu, Zhaoyang</au><au>Chen, Long</au><au>Liu, Shuang</au><au>Xu, Minpeng</au><au>He, Feng</au><au>Ming, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales</atitle><jtitle>Frontiers in neuroscience</jtitle><date>2022-11-18</date><risdate>2022</risdate><volume>16</volume><spage>1032696</spage><epage>1032696</epage><pages>1032696-1032696</pages><issn>1662-453X</issn><issn>1662-4548</issn><eissn>1662-453X</eissn><abstract>Stroke is usually accompanied by a range of complications, like post-stroke motor disorders. So far, its evaluation of motor function is developed on clinical scales, such as FMA, IADL, etc. These scale results from behavior and kinematic assessment are inevitably influenced by subjective factors, like experience of patients and doctors, lacking neurological correlations and evidence. In this paper, we applied a modified k-means clustering based microstate model to analyze 64-channel EEG from nine stroke patients and nine healthy volunteers, respectively. We aimed at finding some possible differences between stroke and healthy individuals in resting-state EEG microstate features. We further explored the correlations between EEG microstate features and scales within stroke group. By statistical analysis, we obtained significant differences in EEG microstate features between stroke and healthy group, and significant correlations between microstate features and scales within stroke group. These results might provide some neurological evidence of EEG microstate analysis for stroke rehabilitation. resting-state EEG microstate analysis is a promising method to assist clinical diagnosis and assessment application as a neurological marker.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fnins.2022.1032696</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-453X |
ispartof | Frontiers in neuroscience, 2022-11, Vol.16, p.1032696-1032696 |
issn | 1662-453X 1662-4548 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_55866c06402648daada3a210e6085f22 |
source | PubMed Central |
subjects | Activities of daily living Algorithms Alzheimer's disease clinical scales Clustering Dyskinesia EEG Electrodes Electroencephalography microstate analysis Movement disorders Neuroscience Patients post-stroke Rehabilitation rehabilitation assessment resting-state EEG Statistical analysis Stroke Topography |
title | Resting-state electroencephalogram microstate to evaluate post-stroke rehabilitation and associate with clinical scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting-state%20electroencephalogram%20microstate%20to%20evaluate%20post-stroke%20rehabilitation%20and%20associate%20with%20clinical%20scales&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Wang,%20Zhongpeng&rft.date=2022-11-18&rft.volume=16&rft.spage=1032696&rft.epage=1032696&rft.pages=1032696-1032696&rft.issn=1662-453X&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2022.1032696&rft_dat=%3Cproquest_doaj_%3E2737595081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-5565f9f2c60312838d01209350e2b75a7daf7baa798a98d6db29ca2afa022ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737595081&rft_id=info:pmid/&rfr_iscdi=true |