Loading…

The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production

To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many stu...

Full description

Saved in:
Bibliographic Details
Published in:AMB Express 2020-12, Vol.10 (1), p.219-219, Article 219
Main Authors: Raghavendran, Vijayendran, Marx, Christian, Olsson, Lisbeth, Bettiga, Maurizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303
cites cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303
container_end_page 219
container_issue 1
container_start_page 219
container_title AMB Express
container_volume 10
creator Raghavendran, Vijayendran
Marx, Christian
Olsson, Lisbeth
Bettiga, Maurizio
description To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g drycellmass −1 ) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L − 1 ). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.
doi_str_mv 10.1186/s13568-020-01148-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5</doaj_id><sourcerecordid>2470902429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhErAdf-WChCo-KlXi0HK2HGeceOXEi50s6r_HaZbS5YBlyZb9zjPj8VsUrzF6j7HkHxKuGZcVIqhCGFNZiWfFOcENrpBk7PmT_VlxmdIO5cEQajh7WZzVeeBG4PPicDdAuY9hBjO7A5QxeCiDLd00R23A-8XrWPZ-mfU8uDBBvilvtTGDjmG8N5BKAxEOLjkNZbdEN_Wld_0UtuCQnClhHvQU_JqnW3KeML0qXljtE1we14vix5fPd1ffqpvvX6-vPt1UhjM2V1y01oCUpLPMMi1FR3PdLWhNJUDXUsDYaiCcUVwbTLiwdYuI7jiRja1RfVFcb9wu6J3aRzfqeK-CdurhIMRe6Tg740ExJrngrGtoI2mbpwUq25pTSiw1hmXW7cZKv2C_tCe0CAl0NIPKffEjxKQSKNvaBjCSilphFdUWKW1qpsAgShnYnAwy9eNGzcgROgNr4_0J_PRmcoPqw0EJQRlqcAa8OwJi-LlAmtXo0tp8PUFYkiJUoAYRSposffuPdBeWOOUPWFXZE1LUIqvIpjIxpBTBPhaDkVq9pzbvqew99eA9tQa9efqMx5A_TsuC-ti9_eoRiH9z_wf7G1rx6KU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473338737</pqid></control><display><type>article</type><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</creator><creatorcontrib>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</creatorcontrib><description>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g drycellmass −1 ) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L − 1 ). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</description><identifier>ISSN: 2191-0855</identifier><identifier>EISSN: 2191-0855</identifier><identifier>DOI: 10.1186/s13568-020-01148-7</identifier><identifier>PMID: 33331971</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioethanol ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Competitiveness ; Enzymes ; Ethanol ; Feedback ; Feedback inhibition ; Fermentation ; Genes ; Glutathione ; Intracellular ; Life Sciences ; Lignocellulose ; Lignocellulosic inhibitors ; Microbial Genetics and Genomics ; Microbiology ; Original ; Original Article ; Recombinants ; Saccharification ; Saccharomyces cerevisiae ; SSF ; Toxicity ; Yeast</subject><ispartof>AMB Express, 2020-12, Vol.10 (1), p.219-219, Article 219</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</citedby><cites>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</cites><orcidid>0000-0001-5934-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473338737/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473338737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/521799$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Raghavendran, Vijayendran</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Olsson, Lisbeth</creatorcontrib><creatorcontrib>Bettiga, Maurizio</creatorcontrib><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><title>AMB Express</title><addtitle>AMB Expr</addtitle><addtitle>AMB Express</addtitle><description>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g drycellmass −1 ) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L − 1 ). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</description><subject>Bioethanol</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Competitiveness</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Feedback</subject><subject>Feedback inhibition</subject><subject>Fermentation</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Lignocellulosic inhibitors</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Article</subject><subject>Recombinants</subject><subject>Saccharification</subject><subject>Saccharomyces cerevisiae</subject><subject>SSF</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2191-0855</issn><issn>2191-0855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhErAdf-WChCo-KlXi0HK2HGeceOXEi50s6r_HaZbS5YBlyZb9zjPj8VsUrzF6j7HkHxKuGZcVIqhCGFNZiWfFOcENrpBk7PmT_VlxmdIO5cEQajh7WZzVeeBG4PPicDdAuY9hBjO7A5QxeCiDLd00R23A-8XrWPZ-mfU8uDBBvilvtTGDjmG8N5BKAxEOLjkNZbdEN_Wld_0UtuCQnClhHvQU_JqnW3KeML0qXljtE1we14vix5fPd1ffqpvvX6-vPt1UhjM2V1y01oCUpLPMMi1FR3PdLWhNJUDXUsDYaiCcUVwbTLiwdYuI7jiRja1RfVFcb9wu6J3aRzfqeK-CdurhIMRe6Tg740ExJrngrGtoI2mbpwUq25pTSiw1hmXW7cZKv2C_tCe0CAl0NIPKffEjxKQSKNvaBjCSilphFdUWKW1qpsAgShnYnAwy9eNGzcgROgNr4_0J_PRmcoPqw0EJQRlqcAa8OwJi-LlAmtXo0tp8PUFYkiJUoAYRSposffuPdBeWOOUPWFXZE1LUIqvIpjIxpBTBPhaDkVq9pzbvqew99eA9tQa9efqMx5A_TsuC-ti9_eoRiH9z_wf7G1rx6KU</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Raghavendran, Vijayendran</creator><creator>Marx, Christian</creator><creator>Olsson, Lisbeth</creator><creator>Bettiga, Maurizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5934-8720</orcidid></search><sort><creationdate>20201217</creationdate><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><author>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioethanol</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Competitiveness</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Feedback</topic><topic>Feedback inhibition</topic><topic>Fermentation</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Lignocellulosic inhibitors</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Article</topic><topic>Recombinants</topic><topic>Saccharification</topic><topic>Saccharomyces cerevisiae</topic><topic>SSF</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavendran, Vijayendran</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Olsson, Lisbeth</creatorcontrib><creatorcontrib>Bettiga, Maurizio</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AMB Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghavendran, Vijayendran</au><au>Marx, Christian</au><au>Olsson, Lisbeth</au><au>Bettiga, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</atitle><jtitle>AMB Express</jtitle><stitle>AMB Expr</stitle><addtitle>AMB Express</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>219</spage><epage>219</epage><pages>219-219</pages><artnum>219</artnum><issn>2191-0855</issn><eissn>2191-0855</eissn><abstract>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g drycellmass −1 ) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L − 1 ). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33331971</pmid><doi>10.1186/s13568-020-01148-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5934-8720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-0855
ispartof AMB Express, 2020-12, Vol.10 (1), p.219-219, Article 219
issn 2191-0855
2191-0855
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bioethanol
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Competitiveness
Enzymes
Ethanol
Feedback
Feedback inhibition
Fermentation
Genes
Glutathione
Intracellular
Life Sciences
Lignocellulose
Lignocellulosic inhibitors
Microbial Genetics and Genomics
Microbiology
Original
Original Article
Recombinants
Saccharification
Saccharomyces cerevisiae
SSF
Toxicity
Yeast
title The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20protective%20role%20of%20intracellular%20glutathione%20in%20Saccharomyces%20cerevisiae%20during%20lignocellulosic%20ethanol%20production&rft.jtitle=AMB%20Express&rft.au=Raghavendran,%20Vijayendran&rft.date=2020-12-17&rft.volume=10&rft.issue=1&rft.spage=219&rft.epage=219&rft.pages=219-219&rft.artnum=219&rft.issn=2191-0855&rft.eissn=2191-0855&rft_id=info:doi/10.1186/s13568-020-01148-7&rft_dat=%3Cproquest_doaj_%3E2470902429%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473338737&rft_id=info:pmid/33331971&rfr_iscdi=true