Loading…
The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production
To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many stu...
Saved in:
Published in: | AMB Express 2020-12, Vol.10 (1), p.219-219, Article 219 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303 |
---|---|
cites | cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303 |
container_end_page | 219 |
container_issue | 1 |
container_start_page | 219 |
container_title | AMB Express |
container_volume | 10 |
creator | Raghavendran, Vijayendran Marx, Christian Olsson, Lisbeth Bettiga, Maurizio |
description | To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g
drycellmass
−1
) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L
− 1
). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione. |
doi_str_mv | 10.1186/s13568-020-01148-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5</doaj_id><sourcerecordid>2470902429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhErAdf-WChCo-KlXi0HK2HGeceOXEi50s6r_HaZbS5YBlyZb9zjPj8VsUrzF6j7HkHxKuGZcVIqhCGFNZiWfFOcENrpBk7PmT_VlxmdIO5cEQajh7WZzVeeBG4PPicDdAuY9hBjO7A5QxeCiDLd00R23A-8XrWPZ-mfU8uDBBvilvtTGDjmG8N5BKAxEOLjkNZbdEN_Wld_0UtuCQnClhHvQU_JqnW3KeML0qXljtE1we14vix5fPd1ffqpvvX6-vPt1UhjM2V1y01oCUpLPMMi1FR3PdLWhNJUDXUsDYaiCcUVwbTLiwdYuI7jiRja1RfVFcb9wu6J3aRzfqeK-CdurhIMRe6Tg740ExJrngrGtoI2mbpwUq25pTSiw1hmXW7cZKv2C_tCe0CAl0NIPKffEjxKQSKNvaBjCSilphFdUWKW1qpsAgShnYnAwy9eNGzcgROgNr4_0J_PRmcoPqw0EJQRlqcAa8OwJi-LlAmtXo0tp8PUFYkiJUoAYRSposffuPdBeWOOUPWFXZE1LUIqvIpjIxpBTBPhaDkVq9pzbvqew99eA9tQa9efqMx5A_TsuC-ti9_eoRiH9z_wf7G1rx6KU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473338737</pqid></control><display><type>article</type><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</creator><creatorcontrib>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</creatorcontrib><description>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g
drycellmass
−1
) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L
− 1
). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</description><identifier>ISSN: 2191-0855</identifier><identifier>EISSN: 2191-0855</identifier><identifier>DOI: 10.1186/s13568-020-01148-7</identifier><identifier>PMID: 33331971</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioethanol ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Competitiveness ; Enzymes ; Ethanol ; Feedback ; Feedback inhibition ; Fermentation ; Genes ; Glutathione ; Intracellular ; Life Sciences ; Lignocellulose ; Lignocellulosic inhibitors ; Microbial Genetics and Genomics ; Microbiology ; Original ; Original Article ; Recombinants ; Saccharification ; Saccharomyces cerevisiae ; SSF ; Toxicity ; Yeast</subject><ispartof>AMB Express, 2020-12, Vol.10 (1), p.219-219, Article 219</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</citedby><cites>FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</cites><orcidid>0000-0001-5934-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473338737/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473338737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/521799$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Raghavendran, Vijayendran</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Olsson, Lisbeth</creatorcontrib><creatorcontrib>Bettiga, Maurizio</creatorcontrib><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><title>AMB Express</title><addtitle>AMB Expr</addtitle><addtitle>AMB Express</addtitle><description>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g
drycellmass
−1
) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L
− 1
). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</description><subject>Bioethanol</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Competitiveness</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Feedback</subject><subject>Feedback inhibition</subject><subject>Fermentation</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Lignocellulosic inhibitors</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Article</subject><subject>Recombinants</subject><subject>Saccharification</subject><subject>Saccharomyces cerevisiae</subject><subject>SSF</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2191-0855</issn><issn>2191-0855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhErAdf-WChCo-KlXi0HK2HGeceOXEi50s6r_HaZbS5YBlyZb9zjPj8VsUrzF6j7HkHxKuGZcVIqhCGFNZiWfFOcENrpBk7PmT_VlxmdIO5cEQajh7WZzVeeBG4PPicDdAuY9hBjO7A5QxeCiDLd00R23A-8XrWPZ-mfU8uDBBvilvtTGDjmG8N5BKAxEOLjkNZbdEN_Wld_0UtuCQnClhHvQU_JqnW3KeML0qXljtE1we14vix5fPd1ffqpvvX6-vPt1UhjM2V1y01oCUpLPMMi1FR3PdLWhNJUDXUsDYaiCcUVwbTLiwdYuI7jiRja1RfVFcb9wu6J3aRzfqeK-CdurhIMRe6Tg740ExJrngrGtoI2mbpwUq25pTSiw1hmXW7cZKv2C_tCe0CAl0NIPKffEjxKQSKNvaBjCSilphFdUWKW1qpsAgShnYnAwy9eNGzcgROgNr4_0J_PRmcoPqw0EJQRlqcAa8OwJi-LlAmtXo0tp8PUFYkiJUoAYRSposffuPdBeWOOUPWFXZE1LUIqvIpjIxpBTBPhaDkVq9pzbvqew99eA9tQa9efqMx5A_TsuC-ti9_eoRiH9z_wf7G1rx6KU</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Raghavendran, Vijayendran</creator><creator>Marx, Christian</creator><creator>Olsson, Lisbeth</creator><creator>Bettiga, Maurizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5934-8720</orcidid></search><sort><creationdate>20201217</creationdate><title>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</title><author>Raghavendran, Vijayendran ; Marx, Christian ; Olsson, Lisbeth ; Bettiga, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioethanol</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Competitiveness</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Feedback</topic><topic>Feedback inhibition</topic><topic>Fermentation</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Lignocellulosic inhibitors</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Article</topic><topic>Recombinants</topic><topic>Saccharification</topic><topic>Saccharomyces cerevisiae</topic><topic>SSF</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavendran, Vijayendran</creatorcontrib><creatorcontrib>Marx, Christian</creatorcontrib><creatorcontrib>Olsson, Lisbeth</creatorcontrib><creatorcontrib>Bettiga, Maurizio</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AMB Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghavendran, Vijayendran</au><au>Marx, Christian</au><au>Olsson, Lisbeth</au><au>Bettiga, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production</atitle><jtitle>AMB Express</jtitle><stitle>AMB Expr</stitle><addtitle>AMB Express</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>219</spage><epage>219</epage><pages>219-219</pages><artnum>219</artnum><issn>2191-0855</issn><eissn>2191-0855</eissn><abstract>To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol g
drycellmass
−1
) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L
− 1
). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33331971</pmid><doi>10.1186/s13568-020-01148-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5934-8720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-0855 |
ispartof | AMB Express, 2020-12, Vol.10 (1), p.219-219, Article 219 |
issn | 2191-0855 2191-0855 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5586765d94984b84bfe48b36442f4cc5 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bioethanol Biomedical and Life Sciences Biosynthesis Biotechnology Competitiveness Enzymes Ethanol Feedback Feedback inhibition Fermentation Genes Glutathione Intracellular Life Sciences Lignocellulose Lignocellulosic inhibitors Microbial Genetics and Genomics Microbiology Original Original Article Recombinants Saccharification Saccharomyces cerevisiae SSF Toxicity Yeast |
title | The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20protective%20role%20of%20intracellular%20glutathione%20in%20Saccharomyces%20cerevisiae%20during%20lignocellulosic%20ethanol%20production&rft.jtitle=AMB%20Express&rft.au=Raghavendran,%20Vijayendran&rft.date=2020-12-17&rft.volume=10&rft.issue=1&rft.spage=219&rft.epage=219&rft.pages=219-219&rft.artnum=219&rft.issn=2191-0855&rft.eissn=2191-0855&rft_id=info:doi/10.1186/s13568-020-01148-7&rft_dat=%3Cproquest_doaj_%3E2470902429%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c655t-67bfce882df5f5a87d4319beaa48eedb4e11fae265413c1267f3b02ad6289f303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473338737&rft_id=info:pmid/33331971&rfr_iscdi=true |