Loading…

Radiofrequency therapy improves exercise capacity of mice with emphysema

Emphysema is a common phenotype of chronic obstructive pulmonary disease (COPD). Although resection of emphysematous tissue can improve lung mechanics, it is invasive and fraught with adverse effects. Meanwhile, radiofrequency (RF) treatment is an extracorporeal method that leads to tissue destructi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-10, Vol.11 (1), p.20056-20056, Article 20056
Main Authors: Tsutsui, Mai, Cheung, Chung Yan, Wada, Takeyuki, Jaw, Jen-erh, Yang, Cheng Wei Tony, Bernatchez, Pascal, White, Zoe, Yang, Chen Xi, Bae, Eun Jeong Annie, Choi, Lauren H., Gelbart, Dan, Lichtenstein, Samuel, Machan, Lindsay, Elizur, Eran, Wolff, Kim, Goodacre, Evan, Lipnicki, Marek, Wong, Denny, Sin, Don D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Emphysema is a common phenotype of chronic obstructive pulmonary disease (COPD). Although resection of emphysematous tissue can improve lung mechanics, it is invasive and fraught with adverse effects. Meanwhile, radiofrequency (RF) treatment is an extracorporeal method that leads to tissue destruction and remodeling, resulting in “volume reduction” and overall improvement in lung compliance of emphysematous lungs. Whether these changes lead to improved exercise tolerance is unknown. Here, we investigated the effectiveness of RF treatment to improve the exercise capacity of mice with emphysema. Fifty-two mice (7 weeks of age) were used in this experiment. A bilateral emphysema model was created by intratracheally instilling porcine pancreatic elastase (PPE) (1.5U/100 g body weight). RF treatment (0.5 W/ g body weight) was administered extracorporeally 14 days later and mice were sacrificed after another 21 days. The exercise capacity of mice was measured using a treadmill. Treadmill runs were performed just before PPE instillation (baseline), before RF treatment and before sacrifice. Following sacrifice, lung compliance and mean linear intercept (Lm) were measured and fibrosis was assessed using a modified Ashcroft score. There were 3 experimental groups: controls (instilled with saline, n = 12), emphysema (instilled with porcine pancreatic elastase, PPE, n = 11) and emphysema + treatment (instilled with PPE and given RF, n = 9). At endpoint, the maximum velocity of the emphysema + treatment group was significantly higher than that of the emphysema group, indicating improved exercise tolerance (86.29% of baseline vs 61.69% of baseline, p = 0.01). Histological analysis revealed a significant reduction in emphysema as denoted by Lm between the two groups (median 29.60 µm vs 35.68 µm, p = 0.03). The emphysema + treatment group also demonstrated a higher prevalence of lung fibrosis (≧Grade 3) compared with the emphysema group (11.7% vs 5.4%, p 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-99474-8