Loading…
Evidence Prediction Method Based on Sentence Selection for Legal Documents
In order to solve the problem that it is difficult to find evidence from a large number of legal document statements and the irrelevant statements in a large number of document sample data will cause a great interference to the prediction results and further improve the accuracy of evidence predicti...
Saved in:
Published in: | Advances in multimedia 2022-07, Vol.2022, p.1-9 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3 |
container_end_page | 9 |
container_issue | |
container_start_page | 1 |
container_title | Advances in multimedia |
container_volume | 2022 |
creator | Bai, Huijie |
description | In order to solve the problem that it is difficult to find evidence from a large number of legal document statements and the irrelevant statements in a large number of document sample data will cause a great interference to the prediction results and further improve the accuracy of evidence prediction, this paper puts forward an intelligent evidence criterion prediction method for legal documents based on the comprehensive consideration of legal problems, the nature of statements, and the characteristics of answers. The binary cross-entropy of different statements is used to obtain the interaction information between different statements. Through experiments, it is found that the score of Joint F1 proposed in this paper is 70.07%, which is more accurate than the mainstream model and also verifies the effectiveness of the scheme. |
doi_str_mv | 10.1155/2022/1926347 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55a838d8bf814fabb1cbaaef4a85f340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55a838d8bf814fabb1cbaaef4a85f340</doaj_id><sourcerecordid>2696745030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3</originalsourceid><addsrcrecordid>eNp90E9PwjAYBvDFaCJBbn6AJR4Vadd2a4-KqBiMJui5ede-1RJYsRsav72DEY6e-ie_Pm_zJMk5JdeUCjHKSJaNqMpyxoujpEdzWQxFrtTxYS_JaTKoa18SQYpMciZ6ydPk21usDKavEa03jQ9V-ozNZ7DpLdRo0_Y8x6rZmTkusSMuxHSGH7BM74LZrFpQnyUnDpY1DvZrP3m_n7yNH4ezl4fp-GY2NJzxZuiy3IqSUwPKGWYoK1AqlYMxVBoEoRgFKw1TWBJiC1ogltZKbB8ZIa1h_WTa5doAC72OfgXxVwfwencR4oeG2HizRC0ESCatLJ2k3EFZUlMCoOMghWOctFkXXdY6hq8N1o1ehE2s2u_rLFd5wQVhW3XVKRNDXUd0h6mU6G35elu-3pff8suOf_rKwo__X_8Bl2uEGQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696745030</pqid></control><display><type>article</type><title>Evidence Prediction Method Based on Sentence Selection for Legal Documents</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Bai, Huijie</creator><contributor>Li, Qiangyi ; Qiangyi Li</contributor><creatorcontrib>Bai, Huijie ; Li, Qiangyi ; Qiangyi Li</creatorcontrib><description>In order to solve the problem that it is difficult to find evidence from a large number of legal document statements and the irrelevant statements in a large number of document sample data will cause a great interference to the prediction results and further improve the accuracy of evidence prediction, this paper puts forward an intelligent evidence criterion prediction method for legal documents based on the comprehensive consideration of legal problems, the nature of statements, and the characteristics of answers. The binary cross-entropy of different statements is used to obtain the interaction information between different statements. Through experiments, it is found that the score of Joint F1 proposed in this paper is 70.07%, which is more accurate than the mainstream model and also verifies the effectiveness of the scheme.</description><identifier>ISSN: 1687-5680</identifier><identifier>EISSN: 1687-5699</identifier><identifier>DOI: 10.1155/2022/1926347</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Artificial intelligence ; Criminal sentences ; Documents ; Evidence ; Legal documents ; Machine learning ; Neural networks ; Reading comprehension ; Semantics</subject><ispartof>Advances in multimedia, 2022-07, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Huijie Bai.</rights><rights>Copyright © 2022 Huijie Bai. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3</citedby><cites>FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3</cites><orcidid>0000-0003-3021-9647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2696745030/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2696745030?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Li, Qiangyi</contributor><contributor>Qiangyi Li</contributor><creatorcontrib>Bai, Huijie</creatorcontrib><title>Evidence Prediction Method Based on Sentence Selection for Legal Documents</title><title>Advances in multimedia</title><description>In order to solve the problem that it is difficult to find evidence from a large number of legal document statements and the irrelevant statements in a large number of document sample data will cause a great interference to the prediction results and further improve the accuracy of evidence prediction, this paper puts forward an intelligent evidence criterion prediction method for legal documents based on the comprehensive consideration of legal problems, the nature of statements, and the characteristics of answers. The binary cross-entropy of different statements is used to obtain the interaction information between different statements. Through experiments, it is found that the score of Joint F1 proposed in this paper is 70.07%, which is more accurate than the mainstream model and also verifies the effectiveness of the scheme.</description><subject>Artificial intelligence</subject><subject>Criminal sentences</subject><subject>Documents</subject><subject>Evidence</subject><subject>Legal documents</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Reading comprehension</subject><subject>Semantics</subject><issn>1687-5680</issn><issn>1687-5699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp90E9PwjAYBvDFaCJBbn6AJR4Vadd2a4-KqBiMJui5ede-1RJYsRsav72DEY6e-ie_Pm_zJMk5JdeUCjHKSJaNqMpyxoujpEdzWQxFrtTxYS_JaTKoa18SQYpMciZ6ydPk21usDKavEa03jQ9V-ozNZ7DpLdRo0_Y8x6rZmTkusSMuxHSGH7BM74LZrFpQnyUnDpY1DvZrP3m_n7yNH4ezl4fp-GY2NJzxZuiy3IqSUwPKGWYoK1AqlYMxVBoEoRgFKw1TWBJiC1ogltZKbB8ZIa1h_WTa5doAC72OfgXxVwfwencR4oeG2HizRC0ESCatLJ2k3EFZUlMCoOMghWOctFkXXdY6hq8N1o1ehE2s2u_rLFd5wQVhW3XVKRNDXUd0h6mU6G35elu-3pff8suOf_rKwo__X_8Bl2uEGQ</recordid><startdate>20220719</startdate><enddate>20220719</enddate><creator>Bai, Huijie</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3021-9647</orcidid></search><sort><creationdate>20220719</creationdate><title>Evidence Prediction Method Based on Sentence Selection for Legal Documents</title><author>Bai, Huijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Criminal sentences</topic><topic>Documents</topic><topic>Evidence</topic><topic>Legal documents</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Reading comprehension</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Huijie</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Huijie</au><au>Li, Qiangyi</au><au>Qiangyi Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence Prediction Method Based on Sentence Selection for Legal Documents</atitle><jtitle>Advances in multimedia</jtitle><date>2022-07-19</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5680</issn><eissn>1687-5699</eissn><abstract>In order to solve the problem that it is difficult to find evidence from a large number of legal document statements and the irrelevant statements in a large number of document sample data will cause a great interference to the prediction results and further improve the accuracy of evidence prediction, this paper puts forward an intelligent evidence criterion prediction method for legal documents based on the comprehensive consideration of legal problems, the nature of statements, and the characteristics of answers. The binary cross-entropy of different statements is used to obtain the interaction information between different statements. Through experiments, it is found that the score of Joint F1 proposed in this paper is 70.07%, which is more accurate than the mainstream model and also verifies the effectiveness of the scheme.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1926347</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3021-9647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5680 |
ispartof | Advances in multimedia, 2022-07, Vol.2022, p.1-9 |
issn | 1687-5680 1687-5699 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_55a838d8bf814fabb1cbaaef4a85f340 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Artificial intelligence Criminal sentences Documents Evidence Legal documents Machine learning Neural networks Reading comprehension Semantics |
title | Evidence Prediction Method Based on Sentence Selection for Legal Documents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20Prediction%20Method%20Based%20on%20Sentence%20Selection%20for%20Legal%20Documents&rft.jtitle=Advances%20in%20multimedia&rft.au=Bai,%20Huijie&rft.date=2022-07-19&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5680&rft.eissn=1687-5699&rft_id=info:doi/10.1155/2022/1926347&rft_dat=%3Cproquest_doaj_%3E2696745030%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-f26d5b41ca9fc3c137e8996acc18cea5931ad8c39eb00d717eebdd8ed5bc58dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696745030&rft_id=info:pmid/&rfr_iscdi=true |