Loading…

Synthesis and Characterization of Sulfonated Poly(Phenylene) Containing a Non-Planar Structure and Dibenzoyl Groups

Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl)-1,2-diphenylethylene (BCD) and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP). Conjugated cis/trans isomer (BCD) had a non-planar conformation containing...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2016-02, Vol.9 (2), p.115
Main Authors: Jang, Hohyoun, Sutradhar, Sabuj, Yoo, Jiho, Ha, Jaeseong, Pyo, Jaeseung, Lee, Chaekyun, Ryu, Taewook, Kim, Whangi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl)-1,2-diphenylethylene (BCD) and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP). Conjugated cis/trans isomer (BCD) had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC) operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl)-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC) ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.
ISSN:1996-1073
1996-1073
DOI:10.3390/en9020115