Loading…

Robust Control Design for Autonomous Vehicles Using Neural Network-Based Model-Matching Approach

In this paper, a novel neural network-based robust control method is presented for a vehicle-oriented problem, in which the main goal is to ensure stable motion of the vehicle under critical circumstances. The proposed method can be divided into two main steps. In the first step, the model matching...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-11, Vol.14 (21), p.7438
Main Authors: Fényes, Dániel, Hegedus, Tamás, Németh, Balázs, Gáspár, Péter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a novel neural network-based robust control method is presented for a vehicle-oriented problem, in which the main goal is to ensure stable motion of the vehicle under critical circumstances. The proposed method can be divided into two main steps. In the first step, the model matching algorithm is proposed, which can adjust the nonlinear dynamics of the controlled system to a nominal, linear model. The aim of model matching is to eliminate the effects of the nonlinearities and uncertainties of the system to increase the performances of the closed-loop system. The model matching process results in an additional control input, which is computed by a neural network during the operation of the control system. Furthermore, in the second step, a robust H∞ is designed, which has double purposes: to handle the fitting error of the neural network and ensure the accurate tracking of the reference signal. The operation and efficiency of the proposed control algorithm are investigated through a complex test scenario, which is performed in the high-fidelity vehicle dynamics simulation software, CarMaker.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14217438