Loading…

From Microcars to Heavy-Duty Vehicles: Vehicle Performance Comparison of Battery and Fuel Cell Electric Vehicles

Low vehicle occupancy rates combined with record conventional vehicle sales justify the requirement to optimize vehicle type based on passengers and a powertrain with zero-emissions. This study compares the performance of different vehicle types based on the number of passengers/payloads, powertrain...

Full description

Saved in:
Bibliographic Details
Published in:Vehicles 2021-12, Vol.3 (4), p.691-720
Main Authors: Sagaria, Shemin, Moreira, António, Margarido, Fernanda, Baptista, Patricia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low vehicle occupancy rates combined with record conventional vehicle sales justify the requirement to optimize vehicle type based on passengers and a powertrain with zero-emissions. This study compares the performance of different vehicle types based on the number of passengers/payloads, powertrain configuration (battery and fuel cell electric configurations), and drive cycles, to assess range and energy consumption. An adequate choice of vehicle segment according to the real passenger occupancy enables the least energy consumption. Vehicle performance in terms of range points to remarkable results for the FCEV (fuel cell electric vehicle) compared to BEV (battery electric vehicle), where the former reached an average range of 600 km or more in all different drive cycles, while the latter was only cruising nearly 350 km. Decisively, the cost analysis indicated that FCEV remains the most expensive option with base cost three-fold that of BEV. The FCEV showed notable results with an average operating cost of less than 7 cents/km, where BEV cost more than 10 €/km in addition to the base cost for light-duty vehicles. The cost analysis for a bus and semi-truck showed that with a full payload, FCPT (fuel cell powertrain) would be more economical with an average energy cost of ~1.2 €/km, while with BPT the energy cost is more than 300 €/km.
ISSN:2624-8921
2624-8921
DOI:10.3390/vehicles3040041