Loading…

Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture

Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aer...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-9
Main Authors: Fang, Bao-dong, Lu, Xi, Xu, Bo, Peng, Yu-ming, Zhang, Heng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3
cites cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3
container_end_page 9
container_issue 2019
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2019
creator Fang, Bao-dong
Lu, Xi
Xu, Bo
Peng, Yu-ming
Zhang, Heng
description Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.
doi_str_mv 10.1155/2019/5765901
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190</doaj_id><sourcerecordid>2196468101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscYRtx0nGjo_LCkqlIpAKZ2tiT7ZeZePFzlL13-OSqhx7mg89885o3qp6K-FMSsTzGqQ5R63QgHxWnUjV6RUa3T5_zJV6Wb3KeQegADWeVPv1ROPdHByN4kdiH9wc_rC4OAZPk2OxHrcxhflmLz5RZi_iJK7DtB251OMYcpkUm8jDEFzgaRbXt2F2N4UQQ0ziG6Us1pyio8N8TPy6ejHQmPnNQzytfn35_HPzdXX1_eJys75aOaz1vOqNQ2f8QF2vgVB5UN4ogt6AJqS2wVoyG9c4BGWaWrVOdk5jL1vQErg5rS4XXR9pZw8p7Cnd2UjB_mvEtLWUyukjW0SuXY81-KZvG9bkSA-d69n4rpMGitb7ReuQ4u8j59nu4jGVr2VbS6Na1UmQhfq4UC7FnBMPj1sl2Htz7L059sGcgn9Y8PIqT7fhKfrdQnNheKD_tESlQTd_AQSqmHE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196468101</pqid></control><display><type>article</type><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng</creator><contributor>Bernelli-Zazzera, Franco ; Franco Bernelli-Zazzera</contributor><creatorcontrib>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng ; Bernelli-Zazzera, Franco ; Franco Bernelli-Zazzera</creatorcontrib><description>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/5765901</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Aerocapture ; Aerospace engineering ; Algorithms ; Atmospheric density ; Coefficients ; Computer simulation ; Controllers ; Gravity ; Laboratories ; Mars ; Mars missions ; Mathematical analysis ; Mechanics ; Parameter uncertainty ; Solar system ; Space exploration ; Switching ; Terminal velocity ; Velocity</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Yu-ming Peng et al.</rights><rights>Copyright © 2019 Yu-ming Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</citedby><cites>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</cites><orcidid>0000-0002-9457-8051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2196468101/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2196468101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Bernelli-Zazzera, Franco</contributor><contributor>Franco Bernelli-Zazzera</contributor><creatorcontrib>Fang, Bao-dong</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Peng, Yu-ming</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><title>International journal of aerospace engineering</title><description>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</description><subject>Adaptive control</subject><subject>Aerocapture</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Atmospheric density</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Gravity</subject><subject>Laboratories</subject><subject>Mars</subject><subject>Mars missions</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Parameter uncertainty</subject><subject>Solar system</subject><subject>Space exploration</subject><subject>Switching</subject><subject>Terminal velocity</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscYRtx0nGjo_LCkqlIpAKZ2tiT7ZeZePFzlL13-OSqhx7mg89885o3qp6K-FMSsTzGqQ5R63QgHxWnUjV6RUa3T5_zJV6Wb3KeQegADWeVPv1ROPdHByN4kdiH9wc_rC4OAZPk2OxHrcxhflmLz5RZi_iJK7DtB251OMYcpkUm8jDEFzgaRbXt2F2N4UQQ0ziG6Us1pyio8N8TPy6ejHQmPnNQzytfn35_HPzdXX1_eJys75aOaz1vOqNQ2f8QF2vgVB5UN4ogt6AJqS2wVoyG9c4BGWaWrVOdk5jL1vQErg5rS4XXR9pZw8p7Cnd2UjB_mvEtLWUyukjW0SuXY81-KZvG9bkSA-d69n4rpMGitb7ReuQ4u8j59nu4jGVr2VbS6Na1UmQhfq4UC7FnBMPj1sl2Htz7L059sGcgn9Y8PIqT7fhKfrdQnNheKD_tESlQTd_AQSqmHE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Fang, Bao-dong</creator><creator>Lu, Xi</creator><creator>Xu, Bo</creator><creator>Peng, Yu-ming</creator><creator>Zhang, Heng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9457-8051</orcidid></search><sort><creationdate>20190101</creationdate><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><author>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Aerocapture</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Atmospheric density</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Gravity</topic><topic>Laboratories</topic><topic>Mars</topic><topic>Mars missions</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Parameter uncertainty</topic><topic>Solar system</topic><topic>Space exploration</topic><topic>Switching</topic><topic>Terminal velocity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bao-dong</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Peng, Yu-ming</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bao-dong</au><au>Lu, Xi</au><au>Xu, Bo</au><au>Peng, Yu-ming</au><au>Zhang, Heng</au><au>Bernelli-Zazzera, Franco</au><au>Franco Bernelli-Zazzera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5765901</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9457-8051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-9
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Adaptive control
Aerocapture
Aerospace engineering
Algorithms
Atmospheric density
Coefficients
Computer simulation
Controllers
Gravity
Laboratories
Mars
Mars missions
Mathematical analysis
Mechanics
Parameter uncertainty
Solar system
Space exploration
Switching
Terminal velocity
Velocity
title Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Predictive%20Guidance%20Algorithm%20Based%20on%20Single%20Ballistic%20Coefficient%20Switching%20for%20Mars%20Aerocapture&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Fang,%20Bao-dong&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/5765901&rft_dat=%3Cproquest_doaj_%3E2196468101%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196468101&rft_id=info:pmid/&rfr_iscdi=true