Loading…
Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture
Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aer...
Saved in:
Published in: | International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3 |
container_end_page | 9 |
container_issue | 2019 |
container_start_page | 1 |
container_title | International journal of aerospace engineering |
container_volume | 2019 |
creator | Fang, Bao-dong Lu, Xi Xu, Bo Peng, Yu-ming Zhang, Heng |
description | Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty. |
doi_str_mv | 10.1155/2019/5765901 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190</doaj_id><sourcerecordid>2196468101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscYRtx0nGjo_LCkqlIpAKZ2tiT7ZeZePFzlL13-OSqhx7mg89885o3qp6K-FMSsTzGqQ5R63QgHxWnUjV6RUa3T5_zJV6Wb3KeQegADWeVPv1ROPdHByN4kdiH9wc_rC4OAZPk2OxHrcxhflmLz5RZi_iJK7DtB251OMYcpkUm8jDEFzgaRbXt2F2N4UQQ0ziG6Us1pyio8N8TPy6ejHQmPnNQzytfn35_HPzdXX1_eJys75aOaz1vOqNQ2f8QF2vgVB5UN4ogt6AJqS2wVoyG9c4BGWaWrVOdk5jL1vQErg5rS4XXR9pZw8p7Cnd2UjB_mvEtLWUyukjW0SuXY81-KZvG9bkSA-d69n4rpMGitb7ReuQ4u8j59nu4jGVr2VbS6Na1UmQhfq4UC7FnBMPj1sl2Htz7L059sGcgn9Y8PIqT7fhKfrdQnNheKD_tESlQTd_AQSqmHE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196468101</pqid></control><display><type>article</type><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng</creator><contributor>Bernelli-Zazzera, Franco ; Franco Bernelli-Zazzera</contributor><creatorcontrib>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng ; Bernelli-Zazzera, Franco ; Franco Bernelli-Zazzera</creatorcontrib><description>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/5765901</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Aerocapture ; Aerospace engineering ; Algorithms ; Atmospheric density ; Coefficients ; Computer simulation ; Controllers ; Gravity ; Laboratories ; Mars ; Mars missions ; Mathematical analysis ; Mechanics ; Parameter uncertainty ; Solar system ; Space exploration ; Switching ; Terminal velocity ; Velocity</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Yu-ming Peng et al.</rights><rights>Copyright © 2019 Yu-ming Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</citedby><cites>FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</cites><orcidid>0000-0002-9457-8051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2196468101/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2196468101?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Bernelli-Zazzera, Franco</contributor><contributor>Franco Bernelli-Zazzera</contributor><creatorcontrib>Fang, Bao-dong</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Peng, Yu-ming</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><title>International journal of aerospace engineering</title><description>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</description><subject>Adaptive control</subject><subject>Aerocapture</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Atmospheric density</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Gravity</subject><subject>Laboratories</subject><subject>Mars</subject><subject>Mars missions</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Parameter uncertainty</subject><subject>Solar system</subject><subject>Space exploration</subject><subject>Switching</subject><subject>Terminal velocity</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscYRtx0nGjo_LCkqlIpAKZ2tiT7ZeZePFzlL13-OSqhx7mg89885o3qp6K-FMSsTzGqQ5R63QgHxWnUjV6RUa3T5_zJV6Wb3KeQegADWeVPv1ROPdHByN4kdiH9wc_rC4OAZPk2OxHrcxhflmLz5RZi_iJK7DtB251OMYcpkUm8jDEFzgaRbXt2F2N4UQQ0ziG6Us1pyio8N8TPy6ejHQmPnNQzytfn35_HPzdXX1_eJys75aOaz1vOqNQ2f8QF2vgVB5UN4ogt6AJqS2wVoyG9c4BGWaWrVOdk5jL1vQErg5rS4XXR9pZw8p7Cnd2UjB_mvEtLWUyukjW0SuXY81-KZvG9bkSA-d69n4rpMGitb7ReuQ4u8j59nu4jGVr2VbS6Na1UmQhfq4UC7FnBMPj1sl2Htz7L059sGcgn9Y8PIqT7fhKfrdQnNheKD_tESlQTd_AQSqmHE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Fang, Bao-dong</creator><creator>Lu, Xi</creator><creator>Xu, Bo</creator><creator>Peng, Yu-ming</creator><creator>Zhang, Heng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9457-8051</orcidid></search><sort><creationdate>20190101</creationdate><title>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</title><author>Fang, Bao-dong ; Lu, Xi ; Xu, Bo ; Peng, Yu-ming ; Zhang, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Aerocapture</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Atmospheric density</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Gravity</topic><topic>Laboratories</topic><topic>Mars</topic><topic>Mars missions</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Parameter uncertainty</topic><topic>Solar system</topic><topic>Space exploration</topic><topic>Switching</topic><topic>Terminal velocity</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bao-dong</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Peng, Yu-ming</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bao-dong</au><au>Lu, Xi</au><au>Xu, Bo</au><au>Peng, Yu-ming</au><au>Zhang, Heng</au><au>Bernelli-Zazzera, Franco</au><au>Franco Bernelli-Zazzera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>Aerocapture can significantly reduce the velocity increment required for a planetary orbital mission and reduce the amount of propellant needed. And it may be one of the key technologies necessary for large-scale space exploration missions in the future. In this paper, the analytical solution of aerocapture based on the piecewise variable ballistic coefficient is studied around the exploration of Mars. An aerocapture analytical predictive guidance algorithm for single ballistic coefficient switching is proposed. The terminal velocity after the ballistic coefficient switching can be obtained by analytical calculation in real time. The adaptive control of the switching time of the ballistic coefficient is realized. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5765901</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9457-8051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-9 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_55e2cb520d3b43e7aca7f8cbe9d88190 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Adaptive control Aerocapture Aerospace engineering Algorithms Atmospheric density Coefficients Computer simulation Controllers Gravity Laboratories Mars Mars missions Mathematical analysis Mechanics Parameter uncertainty Solar system Space exploration Switching Terminal velocity Velocity |
title | Analytical Predictive Guidance Algorithm Based on Single Ballistic Coefficient Switching for Mars Aerocapture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Predictive%20Guidance%20Algorithm%20Based%20on%20Single%20Ballistic%20Coefficient%20Switching%20for%20Mars%20Aerocapture&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Fang,%20Bao-dong&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/5765901&rft_dat=%3Cproquest_doaj_%3E2196468101%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-b9c5c9dfa8b70a56d06d96a0b907a5a43521ee9c3c50693264c18c75b140710e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196468101&rft_id=info:pmid/&rfr_iscdi=true |