Loading…

Multi-Target Effects of Novel Synthetic Coumarin Derivatives Protecting Aβ-GFP SH-SY5Y Cells against Aβ Toxicity

Alzheimer's disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid β (Aβ), which induces neurotoxicity by reducing the expression of brain-deriv...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2021-11, Vol.10 (11), p.3095
Main Authors: Huang, Ching-Chia, Chang, Kuo-Hsuan, Chiu, Ya-Jen, Chen, Yi-Ru, Lung, Tsai-Hui, Hsieh-Li, Hsiu Mei, Su, Ming-Tsan, Sun, Ying-Chieh, Chen, Chiung-Mei, Lin, Wenwei, Lee-Chen, Guey-Jen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid β (Aβ), which induces neurotoxicity by reducing the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TRKB) and increasing oxidative stress, caspase-1, and acetylcholinesterase (AChE) activities. Here, we have found the potential of two novel synthetic coumarin derivatives, ZN014 and ZN015, for the inhibition of Aβ and neuroprotection in SH-SY5Y neuroblastoma cell models for AD. In SH-SY5Y cells expressing the GFP-tagged Aβ-folding reporter, both ZN compounds reduced Aβ aggregation, oxidative stress, activities of caspase-1 and AChE, as well as increased neurite outgrowth. By activating TRKB-mediated extracellular signal-regulated kinase (ERK) and AKT serine/threonine kinase 1 (AKT) signaling, these two ZN compounds also upregulated the cAMP-response-element binding protein (CREB) and its downstream BDNF and anti-apoptotic B-cell lymphoma 2 (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of ZN014 and ZN015. A parallel artificial membrane permeability assay showed that ZN014 and ZN015 could be characterized as blood-brain barrier permeable. Our results suggest ZN014 and ZN015 as novel therapeutic candidates for AD and demonstrate that ZN014 and ZN015 reduce Aβ neurotoxicity via pleiotropic mechanisms.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells10113095