Loading…
Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare
Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these condition...
Saved in:
Published in: | Applied sciences 2024-07, Vol.14 (14), p.6084 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703 |
container_end_page | |
container_issue | 14 |
container_start_page | 6084 |
container_title | Applied sciences |
container_volume | 14 |
creator | Berloco, Francesco Marvulli, Pietro Maria Suglia, Vladimiro Colucci, Simona Pagano, Gaetano Palazzo, Lucia Aliani, Maria Castellana, Giorgio Guido, Patrizia D’Addio, Giovanni Bevilacqua, Vitoantonio |
description | Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios. |
doi_str_mv | 10.3390/app14146084 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802891258</galeid><doaj_id>oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531</doaj_id><sourcerecordid>A802891258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUnvyDyx4UaQ12exHclxKtYWKhyp4C9Nktk3ZbmqyW-i_N1qRCs4cZni8efMVRdeUjBgT5AF2O5rSNCc8PYt6CSnyIUtpcX6SX0YD7zckmKCMU9KLppNmDY0yzSpedG5v9lDHZQP1wRsfP1uNdbzAGlVrbBO3a2e71Tp-L2e37V1smniKULdrBQ6voosKao-Dn9iP3h4nr-PpcP7yNBuX86FiVLRDrQFzDUUhiqpCrbjQSwUocoZLRRVLc4CK8AQVBZYw4JoAFxnPOBKeF4T1o9lRV1vYyJ0zW3AHacHIb8C6lQTXGlWjzHJCFMfQoUhTxFQkCPmScVUVicgYDVo3R62dsx8d-lZubOfC9l6ycMUwJA28X9YKgqhpKts6UFvjlSw5SbigScYDa_QPK7jGrVG2wcoE_E_B_bFAOeu9w-p3GUrk10PlyUPZJ7XqkHc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084779195</pqid></control><display><type>article</type><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</creator><creatorcontrib>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</creatorcontrib><description>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14146084</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anemia ; Artificial intelligence ; Body mass index ; Comorbidity ; Continuous positive airway pressure ; Datasets ; Deep Learning ; explainable artificial intelligence ; Feature selection ; Machine Learning ; Medical prognosis ; obstructive sleep apnea ; Patients ; Rehabilitation ; rehabilitation medicine ; Sleep ; Sleep apnea ; Sleep apnea syndromes ; Survival analysis ; Variables</subject><ispartof>Applied sciences, 2024-07, Vol.14 (14), p.6084</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</cites><orcidid>0009-0003-0600-060X ; 0000-0003-4019-0585 ; 0009-0002-3696-6694 ; 0000-0002-3088-0788 ; 0009-0002-5314-0093 ; 0000-0001-6352-3077 ; 0000-0002-8774-4816 ; 0000-0001-8753-1303 ; 0009-0001-6221-734X ; 0000-0002-2394-8545 ; 0000-0003-4202-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084779195?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084779195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,38499,43878,44573,74163,74877</link.rule.ids></links><search><creatorcontrib>Berloco, Francesco</creatorcontrib><creatorcontrib>Marvulli, Pietro Maria</creatorcontrib><creatorcontrib>Suglia, Vladimiro</creatorcontrib><creatorcontrib>Colucci, Simona</creatorcontrib><creatorcontrib>Pagano, Gaetano</creatorcontrib><creatorcontrib>Palazzo, Lucia</creatorcontrib><creatorcontrib>Aliani, Maria</creatorcontrib><creatorcontrib>Castellana, Giorgio</creatorcontrib><creatorcontrib>Guido, Patrizia</creatorcontrib><creatorcontrib>D’Addio, Giovanni</creatorcontrib><creatorcontrib>Bevilacqua, Vitoantonio</creatorcontrib><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><title>Applied sciences</title><description>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</description><subject>Algorithms</subject><subject>Anemia</subject><subject>Artificial intelligence</subject><subject>Body mass index</subject><subject>Comorbidity</subject><subject>Continuous positive airway pressure</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>explainable artificial intelligence</subject><subject>Feature selection</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>obstructive sleep apnea</subject><subject>Patients</subject><subject>Rehabilitation</subject><subject>rehabilitation medicine</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep apnea syndromes</subject><subject>Survival analysis</subject><subject>Variables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQXUTBUnvyDyx4UaQ12exHclxKtYWKhyp4C9Nktk3ZbmqyW-i_N1qRCs4cZni8efMVRdeUjBgT5AF2O5rSNCc8PYt6CSnyIUtpcX6SX0YD7zckmKCMU9KLppNmDY0yzSpedG5v9lDHZQP1wRsfP1uNdbzAGlVrbBO3a2e71Tp-L2e37V1smniKULdrBQ6voosKao-Dn9iP3h4nr-PpcP7yNBuX86FiVLRDrQFzDUUhiqpCrbjQSwUocoZLRRVLc4CK8AQVBZYw4JoAFxnPOBKeF4T1o9lRV1vYyJ0zW3AHacHIb8C6lQTXGlWjzHJCFMfQoUhTxFQkCPmScVUVicgYDVo3R62dsx8d-lZubOfC9l6ycMUwJA28X9YKgqhpKts6UFvjlSw5SbigScYDa_QPK7jGrVG2wcoE_E_B_bFAOeu9w-p3GUrk10PlyUPZJ7XqkHc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Berloco, Francesco</creator><creator>Marvulli, Pietro Maria</creator><creator>Suglia, Vladimiro</creator><creator>Colucci, Simona</creator><creator>Pagano, Gaetano</creator><creator>Palazzo, Lucia</creator><creator>Aliani, Maria</creator><creator>Castellana, Giorgio</creator><creator>Guido, Patrizia</creator><creator>D’Addio, Giovanni</creator><creator>Bevilacqua, Vitoantonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-0600-060X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0585</orcidid><orcidid>https://orcid.org/0009-0002-3696-6694</orcidid><orcidid>https://orcid.org/0000-0002-3088-0788</orcidid><orcidid>https://orcid.org/0009-0002-5314-0093</orcidid><orcidid>https://orcid.org/0000-0001-6352-3077</orcidid><orcidid>https://orcid.org/0000-0002-8774-4816</orcidid><orcidid>https://orcid.org/0000-0001-8753-1303</orcidid><orcidid>https://orcid.org/0009-0001-6221-734X</orcidid><orcidid>https://orcid.org/0000-0002-2394-8545</orcidid><orcidid>https://orcid.org/0000-0003-4202-8469</orcidid></search><sort><creationdate>20240701</creationdate><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><author>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anemia</topic><topic>Artificial intelligence</topic><topic>Body mass index</topic><topic>Comorbidity</topic><topic>Continuous positive airway pressure</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>explainable artificial intelligence</topic><topic>Feature selection</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>obstructive sleep apnea</topic><topic>Patients</topic><topic>Rehabilitation</topic><topic>rehabilitation medicine</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep apnea syndromes</topic><topic>Survival analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berloco, Francesco</creatorcontrib><creatorcontrib>Marvulli, Pietro Maria</creatorcontrib><creatorcontrib>Suglia, Vladimiro</creatorcontrib><creatorcontrib>Colucci, Simona</creatorcontrib><creatorcontrib>Pagano, Gaetano</creatorcontrib><creatorcontrib>Palazzo, Lucia</creatorcontrib><creatorcontrib>Aliani, Maria</creatorcontrib><creatorcontrib>Castellana, Giorgio</creatorcontrib><creatorcontrib>Guido, Patrizia</creatorcontrib><creatorcontrib>D’Addio, Giovanni</creatorcontrib><creatorcontrib>Bevilacqua, Vitoantonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berloco, Francesco</au><au>Marvulli, Pietro Maria</au><au>Suglia, Vladimiro</au><au>Colucci, Simona</au><au>Pagano, Gaetano</au><au>Palazzo, Lucia</au><au>Aliani, Maria</au><au>Castellana, Giorgio</au><au>Guido, Patrizia</au><au>D’Addio, Giovanni</au><au>Bevilacqua, Vitoantonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</atitle><jtitle>Applied sciences</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>14</issue><spage>6084</spage><pages>6084-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14146084</doi><orcidid>https://orcid.org/0009-0003-0600-060X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0585</orcidid><orcidid>https://orcid.org/0009-0002-3696-6694</orcidid><orcidid>https://orcid.org/0000-0002-3088-0788</orcidid><orcidid>https://orcid.org/0009-0002-5314-0093</orcidid><orcidid>https://orcid.org/0000-0001-6352-3077</orcidid><orcidid>https://orcid.org/0000-0002-8774-4816</orcidid><orcidid>https://orcid.org/0000-0001-8753-1303</orcidid><orcidid>https://orcid.org/0009-0001-6221-734X</orcidid><orcidid>https://orcid.org/0000-0002-2394-8545</orcidid><orcidid>https://orcid.org/0000-0003-4202-8469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-07, Vol.14 (14), p.6084 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531 |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Algorithms Anemia Artificial intelligence Body mass index Comorbidity Continuous positive airway pressure Datasets Deep Learning explainable artificial intelligence Feature selection Machine Learning Medical prognosis obstructive sleep apnea Patients Rehabilitation rehabilitation medicine Sleep Sleep apnea Sleep apnea syndromes Survival analysis Variables |
title | Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Survival%20Analysis%20Model%20Selection%20through%20XAI(t)%20in%20Healthcare&rft.jtitle=Applied%20sciences&rft.au=Berloco,%20Francesco&rft.date=2024-07-01&rft.volume=14&rft.issue=14&rft.spage=6084&rft.pages=6084-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14146084&rft_dat=%3Cgale_doaj_%3EA802891258%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084779195&rft_id=info:pmid/&rft_galeid=A802891258&rfr_iscdi=true |