Loading…

Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare

Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these condition...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-07, Vol.14 (14), p.6084
Main Authors: Berloco, Francesco, Marvulli, Pietro Maria, Suglia, Vladimiro, Colucci, Simona, Pagano, Gaetano, Palazzo, Lucia, Aliani, Maria, Castellana, Giorgio, Guido, Patrizia, D’Addio, Giovanni, Bevilacqua, Vitoantonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703
container_end_page
container_issue 14
container_start_page 6084
container_title Applied sciences
container_volume 14
creator Berloco, Francesco
Marvulli, Pietro Maria
Suglia, Vladimiro
Colucci, Simona
Pagano, Gaetano
Palazzo, Lucia
Aliani, Maria
Castellana, Giorgio
Guido, Patrizia
D’Addio, Giovanni
Bevilacqua, Vitoantonio
description Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.
doi_str_mv 10.3390/app14146084
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802891258</galeid><doaj_id>oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531</doaj_id><sourcerecordid>A802891258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUnvyDyx4UaQ12exHclxKtYWKhyp4C9Nktk3ZbmqyW-i_N1qRCs4cZni8efMVRdeUjBgT5AF2O5rSNCc8PYt6CSnyIUtpcX6SX0YD7zckmKCMU9KLppNmDY0yzSpedG5v9lDHZQP1wRsfP1uNdbzAGlVrbBO3a2e71Tp-L2e37V1smniKULdrBQ6voosKao-Dn9iP3h4nr-PpcP7yNBuX86FiVLRDrQFzDUUhiqpCrbjQSwUocoZLRRVLc4CK8AQVBZYw4JoAFxnPOBKeF4T1o9lRV1vYyJ0zW3AHacHIb8C6lQTXGlWjzHJCFMfQoUhTxFQkCPmScVUVicgYDVo3R62dsx8d-lZubOfC9l6ycMUwJA28X9YKgqhpKts6UFvjlSw5SbigScYDa_QPK7jGrVG2wcoE_E_B_bFAOeu9w-p3GUrk10PlyUPZJ7XqkHc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084779195</pqid></control><display><type>article</type><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</creator><creatorcontrib>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</creatorcontrib><description>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14146084</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anemia ; Artificial intelligence ; Body mass index ; Comorbidity ; Continuous positive airway pressure ; Datasets ; Deep Learning ; explainable artificial intelligence ; Feature selection ; Machine Learning ; Medical prognosis ; obstructive sleep apnea ; Patients ; Rehabilitation ; rehabilitation medicine ; Sleep ; Sleep apnea ; Sleep apnea syndromes ; Survival analysis ; Variables</subject><ispartof>Applied sciences, 2024-07, Vol.14 (14), p.6084</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</cites><orcidid>0009-0003-0600-060X ; 0000-0003-4019-0585 ; 0009-0002-3696-6694 ; 0000-0002-3088-0788 ; 0009-0002-5314-0093 ; 0000-0001-6352-3077 ; 0000-0002-8774-4816 ; 0000-0001-8753-1303 ; 0009-0001-6221-734X ; 0000-0002-2394-8545 ; 0000-0003-4202-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084779195?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084779195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,38499,43878,44573,74163,74877</link.rule.ids></links><search><creatorcontrib>Berloco, Francesco</creatorcontrib><creatorcontrib>Marvulli, Pietro Maria</creatorcontrib><creatorcontrib>Suglia, Vladimiro</creatorcontrib><creatorcontrib>Colucci, Simona</creatorcontrib><creatorcontrib>Pagano, Gaetano</creatorcontrib><creatorcontrib>Palazzo, Lucia</creatorcontrib><creatorcontrib>Aliani, Maria</creatorcontrib><creatorcontrib>Castellana, Giorgio</creatorcontrib><creatorcontrib>Guido, Patrizia</creatorcontrib><creatorcontrib>D’Addio, Giovanni</creatorcontrib><creatorcontrib>Bevilacqua, Vitoantonio</creatorcontrib><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><title>Applied sciences</title><description>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</description><subject>Algorithms</subject><subject>Anemia</subject><subject>Artificial intelligence</subject><subject>Body mass index</subject><subject>Comorbidity</subject><subject>Continuous positive airway pressure</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>explainable artificial intelligence</subject><subject>Feature selection</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>obstructive sleep apnea</subject><subject>Patients</subject><subject>Rehabilitation</subject><subject>rehabilitation medicine</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep apnea syndromes</subject><subject>Survival analysis</subject><subject>Variables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQXUTBUnvyDyx4UaQ12exHclxKtYWKhyp4C9Nktk3ZbmqyW-i_N1qRCs4cZni8efMVRdeUjBgT5AF2O5rSNCc8PYt6CSnyIUtpcX6SX0YD7zckmKCMU9KLppNmDY0yzSpedG5v9lDHZQP1wRsfP1uNdbzAGlVrbBO3a2e71Tp-L2e37V1smniKULdrBQ6voosKao-Dn9iP3h4nr-PpcP7yNBuX86FiVLRDrQFzDUUhiqpCrbjQSwUocoZLRRVLc4CK8AQVBZYw4JoAFxnPOBKeF4T1o9lRV1vYyJ0zW3AHacHIb8C6lQTXGlWjzHJCFMfQoUhTxFQkCPmScVUVicgYDVo3R62dsx8d-lZubOfC9l6ycMUwJA28X9YKgqhpKts6UFvjlSw5SbigScYDa_QPK7jGrVG2wcoE_E_B_bFAOeu9w-p3GUrk10PlyUPZJ7XqkHc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Berloco, Francesco</creator><creator>Marvulli, Pietro Maria</creator><creator>Suglia, Vladimiro</creator><creator>Colucci, Simona</creator><creator>Pagano, Gaetano</creator><creator>Palazzo, Lucia</creator><creator>Aliani, Maria</creator><creator>Castellana, Giorgio</creator><creator>Guido, Patrizia</creator><creator>D’Addio, Giovanni</creator><creator>Bevilacqua, Vitoantonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-0600-060X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0585</orcidid><orcidid>https://orcid.org/0009-0002-3696-6694</orcidid><orcidid>https://orcid.org/0000-0002-3088-0788</orcidid><orcidid>https://orcid.org/0009-0002-5314-0093</orcidid><orcidid>https://orcid.org/0000-0001-6352-3077</orcidid><orcidid>https://orcid.org/0000-0002-8774-4816</orcidid><orcidid>https://orcid.org/0000-0001-8753-1303</orcidid><orcidid>https://orcid.org/0009-0001-6221-734X</orcidid><orcidid>https://orcid.org/0000-0002-2394-8545</orcidid><orcidid>https://orcid.org/0000-0003-4202-8469</orcidid></search><sort><creationdate>20240701</creationdate><title>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</title><author>Berloco, Francesco ; Marvulli, Pietro Maria ; Suglia, Vladimiro ; Colucci, Simona ; Pagano, Gaetano ; Palazzo, Lucia ; Aliani, Maria ; Castellana, Giorgio ; Guido, Patrizia ; D’Addio, Giovanni ; Bevilacqua, Vitoantonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anemia</topic><topic>Artificial intelligence</topic><topic>Body mass index</topic><topic>Comorbidity</topic><topic>Continuous positive airway pressure</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>explainable artificial intelligence</topic><topic>Feature selection</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>obstructive sleep apnea</topic><topic>Patients</topic><topic>Rehabilitation</topic><topic>rehabilitation medicine</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep apnea syndromes</topic><topic>Survival analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berloco, Francesco</creatorcontrib><creatorcontrib>Marvulli, Pietro Maria</creatorcontrib><creatorcontrib>Suglia, Vladimiro</creatorcontrib><creatorcontrib>Colucci, Simona</creatorcontrib><creatorcontrib>Pagano, Gaetano</creatorcontrib><creatorcontrib>Palazzo, Lucia</creatorcontrib><creatorcontrib>Aliani, Maria</creatorcontrib><creatorcontrib>Castellana, Giorgio</creatorcontrib><creatorcontrib>Guido, Patrizia</creatorcontrib><creatorcontrib>D’Addio, Giovanni</creatorcontrib><creatorcontrib>Bevilacqua, Vitoantonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berloco, Francesco</au><au>Marvulli, Pietro Maria</au><au>Suglia, Vladimiro</au><au>Colucci, Simona</au><au>Pagano, Gaetano</au><au>Palazzo, Lucia</au><au>Aliani, Maria</au><au>Castellana, Giorgio</au><au>Guido, Patrizia</au><au>D’Addio, Giovanni</au><au>Bevilacqua, Vitoantonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare</atitle><jtitle>Applied sciences</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>14</issue><spage>6084</spage><pages>6084-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Artificial intelligence algorithms have become extensively utilized in survival analysis for high-dimensional, multi-source data. However, due to their complexity, these methods often yield poorly interpretable outcomes, posing challenges in the analysis of several conditions. One of these conditions is obstructive sleep apnea, a sleep disorder characterized by the simultaneous occurrence of comorbidities. Survival analysis provides a potential solution for assessing and categorizing the severity of obstructive sleep apnea, aiding personalized treatment strategies. Given the critical role of time in such scenarios and considering limitations in model interpretability, time-dependent explainable artificial intelligence algorithms have been developed in recent years for direct application to basic Machine Learning models, such as Cox regression and survival random forest. Our work aims to enhance model selection in OSA survival analysis using time-dependent XAI for Machine Learning and Deep Learning models. We developed an end-to-end pipeline, training several survival models and selecting the best performers. Our top models—Cox regression, Cox time, and logistic hazard—achieved good performance, with C-index scores of 0.81, 0.78, and 0.77, and Brier scores of 0.10, 0.12, and 0.11 on the test set. We applied SurvSHAP methods to Cox regression and logistic hazard to investigate their behavior. Although the models showed similar performance, our analysis established that the results of the log hazard model were more reliable and useful in clinical practice compared to those of Cox regression in OSA scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14146084</doi><orcidid>https://orcid.org/0009-0003-0600-060X</orcidid><orcidid>https://orcid.org/0000-0003-4019-0585</orcidid><orcidid>https://orcid.org/0009-0002-3696-6694</orcidid><orcidid>https://orcid.org/0000-0002-3088-0788</orcidid><orcidid>https://orcid.org/0009-0002-5314-0093</orcidid><orcidid>https://orcid.org/0000-0001-6352-3077</orcidid><orcidid>https://orcid.org/0000-0002-8774-4816</orcidid><orcidid>https://orcid.org/0000-0001-8753-1303</orcidid><orcidid>https://orcid.org/0009-0001-6221-734X</orcidid><orcidid>https://orcid.org/0000-0002-2394-8545</orcidid><orcidid>https://orcid.org/0000-0003-4202-8469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-07, Vol.14 (14), p.6084
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5600c8e9db744ee492ea6b38cf729531
source Publicly Available Content Database; Coronavirus Research Database
subjects Algorithms
Anemia
Artificial intelligence
Body mass index
Comorbidity
Continuous positive airway pressure
Datasets
Deep Learning
explainable artificial intelligence
Feature selection
Machine Learning
Medical prognosis
obstructive sleep apnea
Patients
Rehabilitation
rehabilitation medicine
Sleep
Sleep apnea
Sleep apnea syndromes
Survival analysis
Variables
title Enhancing Survival Analysis Model Selection through XAI(t) in Healthcare
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Survival%20Analysis%20Model%20Selection%20through%20XAI(t)%20in%20Healthcare&rft.jtitle=Applied%20sciences&rft.au=Berloco,%20Francesco&rft.date=2024-07-01&rft.volume=14&rft.issue=14&rft.spage=6084&rft.pages=6084-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14146084&rft_dat=%3Cgale_doaj_%3EA802891258%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ddae6da7797ffedc89dbcae963ebc1c346aaf082ec1a323a8d0a895858e086703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084779195&rft_id=info:pmid/&rft_galeid=A802891258&rfr_iscdi=true