Loading…

Identifying differentially regulated subnetworks from phosphoproteomic data

Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, su...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2010-06, Vol.11 (1), p.351-351, Article 351
Main Authors: Klammer, Martin, Godl, Klaus, Tebbe, Andreas, Schaab, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233
cites cdi_FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233
container_end_page 351
container_issue 1
container_start_page 351
container_title BMC bioinformatics
container_volume 11
creator Klammer, Martin
Godl, Klaus
Tebbe, Andreas
Schaab, Christoph
description Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.
doi_str_mv 10.1186/1471-2105-11-351
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5601f58e27df4004b42e31d4e930b393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A233442544</galeid><doaj_id>oai_doaj_org_article_5601f58e27df4004b42e31d4e930b393</doaj_id><sourcerecordid>A233442544</sourcerecordid><originalsourceid>FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233</originalsourceid><addsrcrecordid>eNqFUk2L1TAUDaI449O9Kym4EBcd89k2G2F4OPpwQPBjHdLmppOxbZ5Jq_P-vakdH1MYkZCve889Sc4JQs8JPiOkKt4QXpKcEixyQnImyAN0egw9vLM-QU9ivMaYlBUWj9EJxaLiVIpT9HFnYBidPbihzYyzFsK81113yAK0U6dHMFmc6gHGXz58j5kNvs_2Vz6mvg9-BN-7JjN61E_RI6u7CM9u5w36dvHu6_ZDfvnp_W57fpnXheBjbjllpTAFQFMZASCNpswYKwomakJYoa2UQhSkJFUaNaamrquSC2CmkZSxDdotvMbra7UPrtfhoLx26k_Ah1bpMLqmAyUKTKyogJbGcox5zSkwYjhIhmsmZ663C9d-qnswTXp80N2KdJ0Z3JVq_U9FZVKXykSwXQhq5_9BsM40vlezMWo2RhGikm-J5dXtNYL_MUEcVe9iA12nB_BTVKXgQjBBi_8jeSU546lv0MsF2eqkhBusT-c3M1qdJxU5p4LPqLN7UKkZSL76AaxL8VXB61VBwoxwM7Z6ilHtvnxeY_GCbYKPMYA96kKwmn_wfUq8uGvIseDvl2W_AYi46ks</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748943494</pqid></control><display><type>article</type><title>Identifying differentially regulated subnetworks from phosphoproteomic data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Klammer, Martin ; Godl, Klaus ; Tebbe, Andreas ; Schaab, Christoph</creator><creatorcontrib>Klammer, Martin ; Godl, Klaus ; Tebbe, Andreas ; Schaab, Christoph</creatorcontrib><description>Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-11-351</identifier><identifier>PMID: 20584295</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Bayes Theorem ; Computational biology ; Gene Expression Profiling ; Genetic regulation ; Methodology ; Models, Statistical ; Phosphorylation ; Physiological aspects ; Post-translational modification ; Proteomics - methods ; Signal Transduction</subject><ispartof>BMC bioinformatics, 2010-06, Vol.11 (1), p.351-351, Article 351</ispartof><rights>COPYRIGHT 2010 BioMed Central Ltd.</rights><rights>Copyright ©2010 Klammer et al; licensee BioMed Central Ltd. 2010 Klammer et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233</citedby><cites>FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914729/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914729/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20584295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klammer, Martin</creatorcontrib><creatorcontrib>Godl, Klaus</creatorcontrib><creatorcontrib>Tebbe, Andreas</creatorcontrib><creatorcontrib>Schaab, Christoph</creatorcontrib><title>Identifying differentially regulated subnetworks from phosphoproteomic data</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Computational biology</subject><subject>Gene Expression Profiling</subject><subject>Genetic regulation</subject><subject>Methodology</subject><subject>Models, Statistical</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Post-translational modification</subject><subject>Proteomics - methods</subject><subject>Signal Transduction</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUk2L1TAUDaI449O9Kym4EBcd89k2G2F4OPpwQPBjHdLmppOxbZ5Jq_P-vakdH1MYkZCve889Sc4JQs8JPiOkKt4QXpKcEixyQnImyAN0egw9vLM-QU9ivMaYlBUWj9EJxaLiVIpT9HFnYBidPbihzYyzFsK81113yAK0U6dHMFmc6gHGXz58j5kNvs_2Vz6mvg9-BN-7JjN61E_RI6u7CM9u5w36dvHu6_ZDfvnp_W57fpnXheBjbjllpTAFQFMZASCNpswYKwomakJYoa2UQhSkJFUaNaamrquSC2CmkZSxDdotvMbra7UPrtfhoLx26k_Ah1bpMLqmAyUKTKyogJbGcox5zSkwYjhIhmsmZ663C9d-qnswTXp80N2KdJ0Z3JVq_U9FZVKXykSwXQhq5_9BsM40vlezMWo2RhGikm-J5dXtNYL_MUEcVe9iA12nB_BTVKXgQjBBi_8jeSU546lv0MsF2eqkhBusT-c3M1qdJxU5p4LPqLN7UKkZSL76AaxL8VXB61VBwoxwM7Z6ilHtvnxeY_GCbYKPMYA96kKwmn_wfUq8uGvIseDvl2W_AYi46ks</recordid><startdate>20100628</startdate><enddate>20100628</enddate><creator>Klammer, Martin</creator><creator>Godl, Klaus</creator><creator>Tebbe, Andreas</creator><creator>Schaab, Christoph</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100628</creationdate><title>Identifying differentially regulated subnetworks from phosphoproteomic data</title><author>Klammer, Martin ; Godl, Klaus ; Tebbe, Andreas ; Schaab, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Computational biology</topic><topic>Gene Expression Profiling</topic><topic>Genetic regulation</topic><topic>Methodology</topic><topic>Models, Statistical</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Post-translational modification</topic><topic>Proteomics - methods</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klammer, Martin</creatorcontrib><creatorcontrib>Godl, Klaus</creatorcontrib><creatorcontrib>Tebbe, Andreas</creatorcontrib><creatorcontrib>Schaab, Christoph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klammer, Martin</au><au>Godl, Klaus</au><au>Tebbe, Andreas</au><au>Schaab, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying differentially regulated subnetworks from phosphoproteomic data</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2010-06-28</date><risdate>2010</risdate><volume>11</volume><issue>1</issue><spage>351</spage><epage>351</epage><pages>351-351</pages><artnum>351</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation). Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>20584295</pmid><doi>10.1186/1471-2105-11-351</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2010-06, Vol.11 (1), p.351-351, Article 351
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5601f58e27df4004b42e31d4e930b393
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Bayes Theorem
Computational biology
Gene Expression Profiling
Genetic regulation
Methodology
Models, Statistical
Phosphorylation
Physiological aspects
Post-translational modification
Proteomics - methods
Signal Transduction
title Identifying differentially regulated subnetworks from phosphoproteomic data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20differentially%20regulated%20subnetworks%20from%20phosphoproteomic%20data&rft.jtitle=BMC%20bioinformatics&rft.au=Klammer,%20Martin&rft.date=2010-06-28&rft.volume=11&rft.issue=1&rft.spage=351&rft.epage=351&rft.pages=351-351&rft.artnum=351&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-11-351&rft_dat=%3Cgale_doaj_%3EA233442544%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b654t-f42375d6eec8d5ee9da23ddf5635b1136af995561718561a02dbb8745e3dc9233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=748943494&rft_id=info:pmid/20584295&rft_galeid=A233442544&rfr_iscdi=true