Loading…

Analysis of Conformational Preferences in Caffeine

High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, le...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-03, Vol.27 (6), p.1937
Main Authors: Gómez, Sara, Rojas-Valencia, Natalia, Restrepo, Albeiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03
cites cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03
container_end_page
container_issue 6
container_start_page 1937
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Gómez, Sara
Rojas-Valencia, Natalia
Restrepo, Albeiro
description High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.
doi_str_mv 10.3390/molecules27061937
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b</doaj_id><sourcerecordid>2642547727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</originalsourceid><addsrcrecordid>eNplkV9LHTEQxYNU1N72A_hSFvriy635t8nmRZBLbQWhPtjnMMlONJfdjU12C377pl4raiGQMDnzY-YcQo4Z_SKEoadjGtAvAxauqWJG6D1yxCSna0GleffifUjel7KllDPJ2gNyKFpRD2VHhJ9PMDyUWJoUmk2aQsojzDHVanOdMWDGyWNp4tRsIASME34g-wGGgh-f7hX5efH1ZvN9ffXj2-Xm_GrtJRfz2indSd1rh046xnuOyiiPSrRMAAIHBYZJyShTXatpy5ignaDoA1em81SsyOWO2yfY2vscR8gPNkG0j4WUby3kOfoBbauoU-Cc7gSTGDwYhB6UU14GxM5V1tmOdb-4EXuP05xheAV9_TPFO3ubftvOSCOrWyty8gTI6deCZbZjLB6HASZMS7FcSUkpa-tyK_L5jXSbllwNfVTxVmrNdVWxncrnVEp1-nkYRu3fdO1_6daeTy-3eO74F6f4A0IRob8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642547727</pqid></control><display><type>article</type><title>Analysis of Conformational Preferences in Caffeine</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</creator><creatorcontrib>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</creatorcontrib><description>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27061937</identifier><identifier>PMID: 35335301</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Caffeine ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Charge transfer ; Conformation ; Critical point ; Electronic structure ; Electrostatic properties ; Electrostatics ; Energy ; Hydrogen ; Hydrogen bonds ; hyperconjugation ; Imidazole ; methyl rotation ; Molecular Conformation ; Molecular structure ; NBO ; Quantum Theory ; Static Electricity ; Steric hindrance ; Xanthines</subject><ispartof>Molecules (Basel, Switzerland), 2022-03, Vol.27 (6), p.1937</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</citedby><cites>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</cites><orcidid>0000-0002-7380-3010 ; 0000-0002-7866-7791 ; 0000-0002-5430-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642547727/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642547727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35335301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><title>Analysis of Conformational Preferences in Caffeine</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</description><subject>Caffeine</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Charge transfer</subject><subject>Conformation</subject><subject>Critical point</subject><subject>Electronic structure</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Energy</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>hyperconjugation</subject><subject>Imidazole</subject><subject>methyl rotation</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>NBO</subject><subject>Quantum Theory</subject><subject>Static Electricity</subject><subject>Steric hindrance</subject><subject>Xanthines</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkV9LHTEQxYNU1N72A_hSFvriy635t8nmRZBLbQWhPtjnMMlONJfdjU12C377pl4raiGQMDnzY-YcQo4Z_SKEoadjGtAvAxauqWJG6D1yxCSna0GleffifUjel7KllDPJ2gNyKFpRD2VHhJ9PMDyUWJoUmk2aQsojzDHVanOdMWDGyWNp4tRsIASME34g-wGGgh-f7hX5efH1ZvN9ffXj2-Xm_GrtJRfz2indSd1rh046xnuOyiiPSrRMAAIHBYZJyShTXatpy5ignaDoA1em81SsyOWO2yfY2vscR8gPNkG0j4WUby3kOfoBbauoU-Cc7gSTGDwYhB6UU14GxM5V1tmOdb-4EXuP05xheAV9_TPFO3ubftvOSCOrWyty8gTI6deCZbZjLB6HASZMS7FcSUkpa-tyK_L5jXSbllwNfVTxVmrNdVWxncrnVEp1-nkYRu3fdO1_6daeTy-3eO74F6f4A0IRob8</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Gómez, Sara</creator><creator>Rojas-Valencia, Natalia</creator><creator>Restrepo, Albeiro</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid></search><sort><creationdate>20220317</creationdate><title>Analysis of Conformational Preferences in Caffeine</title><author>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Caffeine</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Charge transfer</topic><topic>Conformation</topic><topic>Critical point</topic><topic>Electronic structure</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Energy</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>hyperconjugation</topic><topic>Imidazole</topic><topic>methyl rotation</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>NBO</topic><topic>Quantum Theory</topic><topic>Static Electricity</topic><topic>Steric hindrance</topic><topic>Xanthines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Sara</au><au>Rojas-Valencia, Natalia</au><au>Restrepo, Albeiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Conformational Preferences in Caffeine</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>1937</spage><pages>1937-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35335301</pmid><doi>10.3390/molecules27061937</doi><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-03, Vol.27 (6), p.1937
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b
source Open Access: PubMed Central; Publicly Available Content Database; Coronavirus Research Database
subjects Caffeine
Carbonyl compounds
Carbonyl groups
Carbonyls
Charge transfer
Conformation
Critical point
Electronic structure
Electrostatic properties
Electrostatics
Energy
Hydrogen
Hydrogen bonds
hyperconjugation
Imidazole
methyl rotation
Molecular Conformation
Molecular structure
NBO
Quantum Theory
Static Electricity
Steric hindrance
Xanthines
title Analysis of Conformational Preferences in Caffeine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Conformational%20Preferences%20in%20Caffeine&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=G%C3%B3mez,%20Sara&rft.date=2022-03-17&rft.volume=27&rft.issue=6&rft.spage=1937&rft.pages=1937-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27061937&rft_dat=%3Cproquest_doaj_%3E2642547727%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642547727&rft_id=info:pmid/35335301&rfr_iscdi=true