Loading…
Analysis of Conformational Preferences in Caffeine
High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, le...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-03, Vol.27 (6), p.1937 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03 |
container_end_page | |
container_issue | 6 |
container_start_page | 1937 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Gómez, Sara Rojas-Valencia, Natalia Restrepo, Albeiro |
description | High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives. |
doi_str_mv | 10.3390/molecules27061937 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b</doaj_id><sourcerecordid>2642547727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</originalsourceid><addsrcrecordid>eNplkV9LHTEQxYNU1N72A_hSFvriy635t8nmRZBLbQWhPtjnMMlONJfdjU12C377pl4raiGQMDnzY-YcQo4Z_SKEoadjGtAvAxauqWJG6D1yxCSna0GleffifUjel7KllDPJ2gNyKFpRD2VHhJ9PMDyUWJoUmk2aQsojzDHVanOdMWDGyWNp4tRsIASME34g-wGGgh-f7hX5efH1ZvN9ffXj2-Xm_GrtJRfz2indSd1rh046xnuOyiiPSrRMAAIHBYZJyShTXatpy5ignaDoA1em81SsyOWO2yfY2vscR8gPNkG0j4WUby3kOfoBbauoU-Cc7gSTGDwYhB6UU14GxM5V1tmOdb-4EXuP05xheAV9_TPFO3ubftvOSCOrWyty8gTI6deCZbZjLB6HASZMS7FcSUkpa-tyK_L5jXSbllwNfVTxVmrNdVWxncrnVEp1-nkYRu3fdO1_6daeTy-3eO74F6f4A0IRob8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642547727</pqid></control><display><type>article</type><title>Analysis of Conformational Preferences in Caffeine</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</creator><creatorcontrib>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</creatorcontrib><description>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27061937</identifier><identifier>PMID: 35335301</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Caffeine ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Charge transfer ; Conformation ; Critical point ; Electronic structure ; Electrostatic properties ; Electrostatics ; Energy ; Hydrogen ; Hydrogen bonds ; hyperconjugation ; Imidazole ; methyl rotation ; Molecular Conformation ; Molecular structure ; NBO ; Quantum Theory ; Static Electricity ; Steric hindrance ; Xanthines</subject><ispartof>Molecules (Basel, Switzerland), 2022-03, Vol.27 (6), p.1937</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</citedby><cites>FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</cites><orcidid>0000-0002-7380-3010 ; 0000-0002-7866-7791 ; 0000-0002-5430-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642547727/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642547727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35335301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><title>Analysis of Conformational Preferences in Caffeine</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</description><subject>Caffeine</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Charge transfer</subject><subject>Conformation</subject><subject>Critical point</subject><subject>Electronic structure</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Energy</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>hyperconjugation</subject><subject>Imidazole</subject><subject>methyl rotation</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>NBO</subject><subject>Quantum Theory</subject><subject>Static Electricity</subject><subject>Steric hindrance</subject><subject>Xanthines</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkV9LHTEQxYNU1N72A_hSFvriy635t8nmRZBLbQWhPtjnMMlONJfdjU12C377pl4raiGQMDnzY-YcQo4Z_SKEoadjGtAvAxauqWJG6D1yxCSna0GleffifUjel7KllDPJ2gNyKFpRD2VHhJ9PMDyUWJoUmk2aQsojzDHVanOdMWDGyWNp4tRsIASME34g-wGGgh-f7hX5efH1ZvN9ffXj2-Xm_GrtJRfz2indSd1rh046xnuOyiiPSrRMAAIHBYZJyShTXatpy5ignaDoA1em81SsyOWO2yfY2vscR8gPNkG0j4WUby3kOfoBbauoU-Cc7gSTGDwYhB6UU14GxM5V1tmOdb-4EXuP05xheAV9_TPFO3ubftvOSCOrWyty8gTI6deCZbZjLB6HASZMS7FcSUkpa-tyK_L5jXSbllwNfVTxVmrNdVWxncrnVEp1-nkYRu3fdO1_6daeTy-3eO74F6f4A0IRob8</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Gómez, Sara</creator><creator>Rojas-Valencia, Natalia</creator><creator>Restrepo, Albeiro</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid></search><sort><creationdate>20220317</creationdate><title>Analysis of Conformational Preferences in Caffeine</title><author>Gómez, Sara ; Rojas-Valencia, Natalia ; Restrepo, Albeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Caffeine</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Charge transfer</topic><topic>Conformation</topic><topic>Critical point</topic><topic>Electronic structure</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Energy</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>hyperconjugation</topic><topic>Imidazole</topic><topic>methyl rotation</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>NBO</topic><topic>Quantum Theory</topic><topic>Static Electricity</topic><topic>Steric hindrance</topic><topic>Xanthines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Sara</au><au>Rojas-Valencia, Natalia</au><au>Restrepo, Albeiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Conformational Preferences in Caffeine</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>1937</spage><pages>1937-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35335301</pmid><doi>10.3390/molecules27061937</doi><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-03, Vol.27 (6), p.1937 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_560b6abb78314efca9eada6b6c4fee8b |
source | Open Access: PubMed Central; Publicly Available Content Database; Coronavirus Research Database |
subjects | Caffeine Carbonyl compounds Carbonyl groups Carbonyls Charge transfer Conformation Critical point Electronic structure Electrostatic properties Electrostatics Energy Hydrogen Hydrogen bonds hyperconjugation Imidazole methyl rotation Molecular Conformation Molecular structure NBO Quantum Theory Static Electricity Steric hindrance Xanthines |
title | Analysis of Conformational Preferences in Caffeine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Conformational%20Preferences%20in%20Caffeine&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=G%C3%B3mez,%20Sara&rft.date=2022-03-17&rft.volume=27&rft.issue=6&rft.spage=1937&rft.pages=1937-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27061937&rft_dat=%3Cproquest_doaj_%3E2642547727%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-b67847d7beb4b12d2e696ce63513aea2a6a91441016857051130830ecf2698c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642547727&rft_id=info:pmid/35335301&rfr_iscdi=true |