Loading…

Ulinastatin modulates NLRP3 inflammasome pathway in PTZ-induced epileptic mice: A potential mechanistic insight

The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome-driven immune-inflammatory response has been shown to play a critical role in epilepsy progression across multiple studies. While Ulinastatin (UTI), an immunomodulatory agent known to target the NLRP3 pathway in neurologica...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-10, Vol.10 (19), p.e38050, Article e38050
Main Authors: Wang, Huan, Ma, Yuzhu, Jin, Dongmei, Yang, Xinlei, Xu, Xiangping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome-driven immune-inflammatory response has been shown to play a critical role in epilepsy progression across multiple studies. While Ulinastatin (UTI), an immunomodulatory agent known to target the NLRP3 pathway in neurological disorders, its implications in epilepsy have not been extensively studied. This investigation aims to explore UTI's role and underlying mechanisms in epilepsy. To assess UTI's effects on epilepsy severity, neuroinflammation, and BBB integrity, a pentylenetetrazole (PTZ)-induced epilepsy model in mice and a co-culture system involving BV2 and HT22 cells stimulated by lipopolysaccharide (LPS) and ATP were employed. Techniques utilized included qPCR, Western blotting, ELISA, immunohistochemistry (IHC) staining, Evans Blue dye extravasation, glutamate assays, the Morris water maze, and Annexin V apoptosis assays. In the PTZ model, UTI administration led to a substantial decrease in seizure intensity and susceptibility, inhibited NLRP3 inflammasome activation, reduced neuroinflammatory interactions, lowered hippocampal and systemic inflammatory mediator levels, and improved cognitive performance. Furthermore, UTI upregulated claudin-5 expression, a tight junction protein in the endothelium, and diminished Evans Blue dye leakage, indicating improved BBB integrity. In BV2 and HT22 cell co-culture models, UTI exerted neuroprotective effects by mitigating microglia-mediated neurotoxicity and fostering neuronal recovery. The findings demonstrate that UTI exerts transformative regulatory effects on the NLRP3 inflammasome in epilepsy models. This intervention effectively suppresses neuroinflammation, lessens seizure severity and susceptibility, and ameliorates epilepsy-related BBB dysfunction and cognitive impairments.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e38050