Loading…

Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets

Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the resp...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2022-08, Vol.12 (8), p.1393
Main Authors: Wang, Xinyuan, Cao, Zhuokun, Fu, Gaofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3
cites cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3
container_end_page
container_issue 8
container_start_page 1393
container_title Metals (Basel )
container_volume 12
creator Wang, Xinyuan
Cao, Zhuokun
Fu, Gaofeng
description Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.
doi_str_mv 10.3390/met12081393
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_563a615a3f5b4a419850344470aec85c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745886108</galeid><doaj_id>oai_doaj_org_article_563a615a3f5b4a419850344470aec85c</doaj_id><sourcerecordid>A745886108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</originalsourceid><addsrcrecordid>eNpNUVFr3DAMDmOFlrZP_QOGPZa0dmzHzuPt2G2FQrvdvfTJKI588XGJO8fZsX9ft1dKJYHEh_TxSSqKK0ZvOG_o7YCJVVQz3vAvxVlFlSyFouzrp_q0uJymHc2mq5o2zVnx9HuGyZfrBMlbsukjYvkY_JjIdxw7P25z7uGfD5EERxb7efDjPJBVgIGsYewO3vbk4FNPlqs_j2QFFst1j5imi-LEwX7Cy_d8XmxWPzbLX-X9w8-75eK-tJzzVMoaZdtSaWshOdMVaIcNbbjDVqmWU2p5DkdBqtZxZm0NQjuQFe10pSw_L-6OtF2AnXmOfoD43wTw5g0IcWsg5t32aGTNoWYSuJOtAMEaLSkXIh8G0Gr5yvXtyPUcw98Zp2R2YY5jVm8qRetKaNmo3HVz7NpCJvWjCymCzd7h4G0Y0fmML5SQWteM6jxwfRywMUxTRPchk1Hz-jrz6XX8BaQciLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706248597</pqid></control><display><type>article</type><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><source>Publicly Available Content Database</source><creator>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</creator><creatorcontrib>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</creatorcontrib><description>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met12081393</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesives ; Aluminum ; aluminum foam ; Bending ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Composite materials ; Deformation ; deformation modes ; Density ; Energy absorption ; Epoxy resins ; Indentation ; Interfaces ; Load ; Mechanical properties ; Metal foams ; Microprocessors ; Porous materials ; quasi-static ; Sandwich panels ; sandwich structure ; Sheets ; Sound transmission ; Stiffness ; Thickness ; three-point bending ; Tomography</subject><ispartof>Metals (Basel ), 2022-08, Vol.12 (8), p.1393</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</citedby><cites>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706248597/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706248597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Cao, Zhuokun</creatorcontrib><creatorcontrib>Fu, Gaofeng</creatorcontrib><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><title>Metals (Basel )</title><description>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</description><subject>Adhesives</subject><subject>Aluminum</subject><subject>aluminum foam</subject><subject>Bending</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>deformation modes</subject><subject>Density</subject><subject>Energy absorption</subject><subject>Epoxy resins</subject><subject>Indentation</subject><subject>Interfaces</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>Metal foams</subject><subject>Microprocessors</subject><subject>Porous materials</subject><subject>quasi-static</subject><subject>Sandwich panels</subject><subject>sandwich structure</subject><subject>Sheets</subject><subject>Sound transmission</subject><subject>Stiffness</subject><subject>Thickness</subject><subject>three-point bending</subject><subject>Tomography</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFr3DAMDmOFlrZP_QOGPZa0dmzHzuPt2G2FQrvdvfTJKI588XGJO8fZsX9ft1dKJYHEh_TxSSqKK0ZvOG_o7YCJVVQz3vAvxVlFlSyFouzrp_q0uJymHc2mq5o2zVnx9HuGyZfrBMlbsukjYvkY_JjIdxw7P25z7uGfD5EERxb7efDjPJBVgIGsYewO3vbk4FNPlqs_j2QFFst1j5imi-LEwX7Cy_d8XmxWPzbLX-X9w8-75eK-tJzzVMoaZdtSaWshOdMVaIcNbbjDVqmWU2p5DkdBqtZxZm0NQjuQFe10pSw_L-6OtF2AnXmOfoD43wTw5g0IcWsg5t32aGTNoWYSuJOtAMEaLSkXIh8G0Gr5yvXtyPUcw98Zp2R2YY5jVm8qRetKaNmo3HVz7NpCJvWjCymCzd7h4G0Y0fmML5SQWteM6jxwfRywMUxTRPchk1Hz-jrz6XX8BaQciLk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Xinyuan</creator><creator>Cao, Zhuokun</creator><creator>Fu, Gaofeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220801</creationdate><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><author>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesives</topic><topic>Aluminum</topic><topic>aluminum foam</topic><topic>Bending</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>deformation modes</topic><topic>Density</topic><topic>Energy absorption</topic><topic>Epoxy resins</topic><topic>Indentation</topic><topic>Interfaces</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>Metal foams</topic><topic>Microprocessors</topic><topic>Porous materials</topic><topic>quasi-static</topic><topic>Sandwich panels</topic><topic>sandwich structure</topic><topic>Sheets</topic><topic>Sound transmission</topic><topic>Stiffness</topic><topic>Thickness</topic><topic>three-point bending</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Cao, Zhuokun</creatorcontrib><creatorcontrib>Fu, Gaofeng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinyuan</au><au>Cao, Zhuokun</au><au>Fu, Gaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</atitle><jtitle>Metals (Basel )</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>8</issue><spage>1393</spage><pages>1393-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met12081393</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2022-08, Vol.12 (8), p.1393
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_563a615a3f5b4a419850344470aec85c
source Publicly Available Content Database
subjects Adhesives
Aluminum
aluminum foam
Bending
Carbon fiber reinforced plastics
Carbon fiber reinforcement
Composite materials
Deformation
deformation modes
Density
Energy absorption
Epoxy resins
Indentation
Interfaces
Load
Mechanical properties
Metal foams
Microprocessors
Porous materials
quasi-static
Sandwich panels
sandwich structure
Sheets
Sound transmission
Stiffness
Thickness
three-point bending
Tomography
title Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Static%20Three-Point%20Bending%20Behavior%20of%20Aluminum%20Foam%20Sandwich%20with%20CFRP%20Face-Sheets&rft.jtitle=Metals%20(Basel%20)&rft.au=Wang,%20Xinyuan&rft.date=2022-08-01&rft.volume=12&rft.issue=8&rft.spage=1393&rft.pages=1393-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met12081393&rft_dat=%3Cgale_doaj_%3EA745886108%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706248597&rft_id=info:pmid/&rft_galeid=A745886108&rfr_iscdi=true