Loading…
Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets
Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the resp...
Saved in:
Published in: | Metals (Basel ) 2022-08, Vol.12 (8), p.1393 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1393 |
container_title | Metals (Basel ) |
container_volume | 12 |
creator | Wang, Xinyuan Cao, Zhuokun Fu, Gaofeng |
description | Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding. |
doi_str_mv | 10.3390/met12081393 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_563a615a3f5b4a419850344470aec85c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745886108</galeid><doaj_id>oai_doaj_org_article_563a615a3f5b4a419850344470aec85c</doaj_id><sourcerecordid>A745886108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</originalsourceid><addsrcrecordid>eNpNUVFr3DAMDmOFlrZP_QOGPZa0dmzHzuPt2G2FQrvdvfTJKI588XGJO8fZsX9ft1dKJYHEh_TxSSqKK0ZvOG_o7YCJVVQz3vAvxVlFlSyFouzrp_q0uJymHc2mq5o2zVnx9HuGyZfrBMlbsukjYvkY_JjIdxw7P25z7uGfD5EERxb7efDjPJBVgIGsYewO3vbk4FNPlqs_j2QFFst1j5imi-LEwX7Cy_d8XmxWPzbLX-X9w8-75eK-tJzzVMoaZdtSaWshOdMVaIcNbbjDVqmWU2p5DkdBqtZxZm0NQjuQFe10pSw_L-6OtF2AnXmOfoD43wTw5g0IcWsg5t32aGTNoWYSuJOtAMEaLSkXIh8G0Gr5yvXtyPUcw98Zp2R2YY5jVm8qRetKaNmo3HVz7NpCJvWjCymCzd7h4G0Y0fmML5SQWteM6jxwfRywMUxTRPchk1Hz-jrz6XX8BaQciLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706248597</pqid></control><display><type>article</type><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><source>Publicly Available Content Database</source><creator>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</creator><creatorcontrib>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</creatorcontrib><description>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met12081393</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesives ; Aluminum ; aluminum foam ; Bending ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Composite materials ; Deformation ; deformation modes ; Density ; Energy absorption ; Epoxy resins ; Indentation ; Interfaces ; Load ; Mechanical properties ; Metal foams ; Microprocessors ; Porous materials ; quasi-static ; Sandwich panels ; sandwich structure ; Sheets ; Sound transmission ; Stiffness ; Thickness ; three-point bending ; Tomography</subject><ispartof>Metals (Basel ), 2022-08, Vol.12 (8), p.1393</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</citedby><cites>FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706248597/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706248597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Cao, Zhuokun</creatorcontrib><creatorcontrib>Fu, Gaofeng</creatorcontrib><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><title>Metals (Basel )</title><description>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</description><subject>Adhesives</subject><subject>Aluminum</subject><subject>aluminum foam</subject><subject>Bending</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>deformation modes</subject><subject>Density</subject><subject>Energy absorption</subject><subject>Epoxy resins</subject><subject>Indentation</subject><subject>Interfaces</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>Metal foams</subject><subject>Microprocessors</subject><subject>Porous materials</subject><subject>quasi-static</subject><subject>Sandwich panels</subject><subject>sandwich structure</subject><subject>Sheets</subject><subject>Sound transmission</subject><subject>Stiffness</subject><subject>Thickness</subject><subject>three-point bending</subject><subject>Tomography</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFr3DAMDmOFlrZP_QOGPZa0dmzHzuPt2G2FQrvdvfTJKI588XGJO8fZsX9ft1dKJYHEh_TxSSqKK0ZvOG_o7YCJVVQz3vAvxVlFlSyFouzrp_q0uJymHc2mq5o2zVnx9HuGyZfrBMlbsukjYvkY_JjIdxw7P25z7uGfD5EERxb7efDjPJBVgIGsYewO3vbk4FNPlqs_j2QFFst1j5imi-LEwX7Cy_d8XmxWPzbLX-X9w8-75eK-tJzzVMoaZdtSaWshOdMVaIcNbbjDVqmWU2p5DkdBqtZxZm0NQjuQFe10pSw_L-6OtF2AnXmOfoD43wTw5g0IcWsg5t32aGTNoWYSuJOtAMEaLSkXIh8G0Gr5yvXtyPUcw98Zp2R2YY5jVm8qRetKaNmo3HVz7NpCJvWjCymCzd7h4G0Y0fmML5SQWteM6jxwfRywMUxTRPchk1Hz-jrz6XX8BaQciLk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Xinyuan</creator><creator>Cao, Zhuokun</creator><creator>Fu, Gaofeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220801</creationdate><title>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</title><author>Wang, Xinyuan ; Cao, Zhuokun ; Fu, Gaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesives</topic><topic>Aluminum</topic><topic>aluminum foam</topic><topic>Bending</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>deformation modes</topic><topic>Density</topic><topic>Energy absorption</topic><topic>Epoxy resins</topic><topic>Indentation</topic><topic>Interfaces</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>Metal foams</topic><topic>Microprocessors</topic><topic>Porous materials</topic><topic>quasi-static</topic><topic>Sandwich panels</topic><topic>sandwich structure</topic><topic>Sheets</topic><topic>Sound transmission</topic><topic>Stiffness</topic><topic>Thickness</topic><topic>three-point bending</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Cao, Zhuokun</creatorcontrib><creatorcontrib>Fu, Gaofeng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinyuan</au><au>Cao, Zhuokun</au><au>Fu, Gaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets</atitle><jtitle>Metals (Basel )</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>8</issue><spage>1393</spage><pages>1393-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Aluminum foam sandwich panels are excellent structure–function integrated materials. With high specific strength, cushioning energy absorption and sound absorption of aluminum foam material, they overcome the disadvantage of the low strength of single aluminum foam materials. In this paper, the response of aluminum sandwich panels comprising aluminum foam cores and carbon fiber reinforced plastic (CFRP) face-sheets was investigated under quasi-static three-point bending, and the effect of core thickness as well as core density on flexural loads and deformation modes was studied. The experimental results show that increasing the thickness and the density of the core materials can increase the flexural load and bending stiffness in the bending process. The aluminum foam sandwich panels mainly include the following deformation modes in the three-point bending process: indentation, core shear, face-sheet fracture and debonding.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met12081393</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2022-08, Vol.12 (8), p.1393 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_563a615a3f5b4a419850344470aec85c |
source | Publicly Available Content Database |
subjects | Adhesives Aluminum aluminum foam Bending Carbon fiber reinforced plastics Carbon fiber reinforcement Composite materials Deformation deformation modes Density Energy absorption Epoxy resins Indentation Interfaces Load Mechanical properties Metal foams Microprocessors Porous materials quasi-static Sandwich panels sandwich structure Sheets Sound transmission Stiffness Thickness three-point bending Tomography |
title | Quasi-Static Three-Point Bending Behavior of Aluminum Foam Sandwich with CFRP Face-Sheets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Static%20Three-Point%20Bending%20Behavior%20of%20Aluminum%20Foam%20Sandwich%20with%20CFRP%20Face-Sheets&rft.jtitle=Metals%20(Basel%20)&rft.au=Wang,%20Xinyuan&rft.date=2022-08-01&rft.volume=12&rft.issue=8&rft.spage=1393&rft.pages=1393-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met12081393&rft_dat=%3Cgale_doaj_%3EA745886108%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-56e5bb05c6453182a8fe9093feb77b300c30c3f0a57bf31cc6a48fa520d827c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706248597&rft_id=info:pmid/&rft_galeid=A745886108&rfr_iscdi=true |