Loading…
Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma
Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric mater...
Saved in:
Published in: | Bioengineering & translational medicine 2024-11, Vol.9 (6), p.e10675-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4745-72a47758e2745b55b182fd906a022c7cf8c43611f23d92f6a1c8c647d441170c3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e10675 |
container_title | Bioengineering & translational medicine |
container_volume | 9 |
creator | Al‐Kharboosh, Rawan Bechtle, Alex Tzeng, Stephany Y. Zheng, Jiaying Mondal, Sujan Kumar Wilson, David R. Perez‐Vega, Carlos Green, Jordan J. Quiñones‐Hinojosa, Alfredo |
description | Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non‐viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein‐4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem‐like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti‐glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti‐proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient‐derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology. |
doi_str_mv | 10.1002/btm2.10675 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_564e9e2cb426416bac761d550052e0e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_564e9e2cb426416bac761d550052e0e0</doaj_id><sourcerecordid>3127474987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4745-72a47758e2745b55b182fd906a022c7cf8c43611f23d92f6a1c8c647d441170c3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXphgdAltggpAHb8SVZIai4VCpiM6wtxzmZ8Si2g-0UzY5H4AF4Op4EZ6ZULQtWto-_89n6darqKcGvCMb0dZcdLTsh-YPqlNYNXgkpyMM7-5PqPKUdxpgIUtcNe1yd1C1nHLf1afVrvYWoJ5izNWgKGXy2ekTa98i6SZuMwoC89gH8xnqACD2adLaF-_3jZw_RXpeKgwTebPeutKYMDhkYx4SsRxq5OZZGFAtisg3-4I5g5hhLDyAXehiXV7az0x5tRhu6UaccnH5SPRr0mOD8Zj2rvn54v774tLr68vHy4u3VyjDJ-EpSzaTkDdBy6jjvSEOHvsVCY0qNNENjWC0IGWjdt3QQmpjGCCZ7xgiR2NRn1eXR2we9U1O0Tse9CtqqQyHEjdKxBDSC4oJBC9R0jApGRKdNSbjnHGNOAQMurjdH1zR3DnpTgop6vCe9f-PtVm3CtSKE84ZiWgwvbgwxfJshZeVsWgLVHsKcVE1o01BJeV3Q5_-guzBHX7JaKFnSaRtZqJdHysSQUoTh9jcEq2WI1DJE6jBEBX529_-36N-RKQA5At_tCPv_qNS79Wd6lP4BQOzUWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127474987</pqid></control><display><type>article</type><title>Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Al‐Kharboosh, Rawan ; Bechtle, Alex ; Tzeng, Stephany Y. ; Zheng, Jiaying ; Mondal, Sujan Kumar ; Wilson, David R. ; Perez‐Vega, Carlos ; Green, Jordan J. ; Quiñones‐Hinojosa, Alfredo</creator><creatorcontrib>Al‐Kharboosh, Rawan ; Bechtle, Alex ; Tzeng, Stephany Y. ; Zheng, Jiaying ; Mondal, Sujan Kumar ; Wilson, David R. ; Perez‐Vega, Carlos ; Green, Jordan J. ; Quiñones‐Hinojosa, Alfredo</creatorcontrib><description>Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non‐viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein‐4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem‐like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti‐glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti‐proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient‐derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.</description><identifier>ISSN: 2380-6761</identifier><identifier>EISSN: 2380-6761</identifier><identifier>DOI: 10.1002/btm2.10675</identifier><identifier>PMID: 39545093</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bioengineering ; Brain cancer ; Cancer therapies ; Cargo ; Engineering ; GBM ; Glioma ; Influence ; Medical prognosis ; MSC ; nanoengineering ; Nanoparticles ; Patients ; Proteins ; Regenerative medicine ; resection ; Stem cells ; Success</subject><ispartof>Bioengineering & translational medicine, 2024-11, Vol.9 (6), p.e10675-n/a</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2024 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4745-72a47758e2745b55b182fd906a022c7cf8c43611f23d92f6a1c8c647d441170c3</cites><orcidid>0000-0003-4176-3808 ; 0000-0003-4966-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3127474987/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3127474987?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39545093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al‐Kharboosh, Rawan</creatorcontrib><creatorcontrib>Bechtle, Alex</creatorcontrib><creatorcontrib>Tzeng, Stephany Y.</creatorcontrib><creatorcontrib>Zheng, Jiaying</creatorcontrib><creatorcontrib>Mondal, Sujan Kumar</creatorcontrib><creatorcontrib>Wilson, David R.</creatorcontrib><creatorcontrib>Perez‐Vega, Carlos</creatorcontrib><creatorcontrib>Green, Jordan J.</creatorcontrib><creatorcontrib>Quiñones‐Hinojosa, Alfredo</creatorcontrib><title>Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma</title><title>Bioengineering & translational medicine</title><addtitle>Bioeng Transl Med</addtitle><description>Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non‐viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein‐4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem‐like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti‐glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti‐proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient‐derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.</description><subject>Bioengineering</subject><subject>Brain cancer</subject><subject>Cancer therapies</subject><subject>Cargo</subject><subject>Engineering</subject><subject>GBM</subject><subject>Glioma</subject><subject>Influence</subject><subject>Medical prognosis</subject><subject>MSC</subject><subject>nanoengineering</subject><subject>Nanoparticles</subject><subject>Patients</subject><subject>Proteins</subject><subject>Regenerative medicine</subject><subject>resection</subject><subject>Stem cells</subject><subject>Success</subject><issn>2380-6761</issn><issn>2380-6761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXphgdAltggpAHb8SVZIai4VCpiM6wtxzmZ8Si2g-0UzY5H4AF4Op4EZ6ZULQtWto-_89n6darqKcGvCMb0dZcdLTsh-YPqlNYNXgkpyMM7-5PqPKUdxpgIUtcNe1yd1C1nHLf1afVrvYWoJ5izNWgKGXy2ekTa98i6SZuMwoC89gH8xnqACD2adLaF-_3jZw_RXpeKgwTebPeutKYMDhkYx4SsRxq5OZZGFAtisg3-4I5g5hhLDyAXehiXV7az0x5tRhu6UaccnH5SPRr0mOD8Zj2rvn54v774tLr68vHy4u3VyjDJ-EpSzaTkDdBy6jjvSEOHvsVCY0qNNENjWC0IGWjdt3QQmpjGCCZ7xgiR2NRn1eXR2we9U1O0Tse9CtqqQyHEjdKxBDSC4oJBC9R0jApGRKdNSbjnHGNOAQMurjdH1zR3DnpTgop6vCe9f-PtVm3CtSKE84ZiWgwvbgwxfJshZeVsWgLVHsKcVE1o01BJeV3Q5_-guzBHX7JaKFnSaRtZqJdHysSQUoTh9jcEq2WI1DJE6jBEBX529_-36N-RKQA5At_tCPv_qNS79Wd6lP4BQOzUWA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Al‐Kharboosh, Rawan</creator><creator>Bechtle, Alex</creator><creator>Tzeng, Stephany Y.</creator><creator>Zheng, Jiaying</creator><creator>Mondal, Sujan Kumar</creator><creator>Wilson, David R.</creator><creator>Perez‐Vega, Carlos</creator><creator>Green, Jordan J.</creator><creator>Quiñones‐Hinojosa, Alfredo</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4176-3808</orcidid><orcidid>https://orcid.org/0000-0003-4966-672X</orcidid></search><sort><creationdate>202411</creationdate><title>Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma</title><author>Al‐Kharboosh, Rawan ; Bechtle, Alex ; Tzeng, Stephany Y. ; Zheng, Jiaying ; Mondal, Sujan Kumar ; Wilson, David R. ; Perez‐Vega, Carlos ; Green, Jordan J. ; Quiñones‐Hinojosa, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4745-72a47758e2745b55b182fd906a022c7cf8c43611f23d92f6a1c8c647d441170c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Brain cancer</topic><topic>Cancer therapies</topic><topic>Cargo</topic><topic>Engineering</topic><topic>GBM</topic><topic>Glioma</topic><topic>Influence</topic><topic>Medical prognosis</topic><topic>MSC</topic><topic>nanoengineering</topic><topic>Nanoparticles</topic><topic>Patients</topic><topic>Proteins</topic><topic>Regenerative medicine</topic><topic>resection</topic><topic>Stem cells</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al‐Kharboosh, Rawan</creatorcontrib><creatorcontrib>Bechtle, Alex</creatorcontrib><creatorcontrib>Tzeng, Stephany Y.</creatorcontrib><creatorcontrib>Zheng, Jiaying</creatorcontrib><creatorcontrib>Mondal, Sujan Kumar</creatorcontrib><creatorcontrib>Wilson, David R.</creatorcontrib><creatorcontrib>Perez‐Vega, Carlos</creatorcontrib><creatorcontrib>Green, Jordan J.</creatorcontrib><creatorcontrib>Quiñones‐Hinojosa, Alfredo</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering & translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al‐Kharboosh, Rawan</au><au>Bechtle, Alex</au><au>Tzeng, Stephany Y.</au><au>Zheng, Jiaying</au><au>Mondal, Sujan Kumar</au><au>Wilson, David R.</au><au>Perez‐Vega, Carlos</au><au>Green, Jordan J.</au><au>Quiñones‐Hinojosa, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma</atitle><jtitle>Bioengineering & translational medicine</jtitle><addtitle>Bioeng Transl Med</addtitle><date>2024-11</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>e10675</spage><epage>n/a</epage><pages>e10675-n/a</pages><issn>2380-6761</issn><eissn>2380-6761</eissn><abstract>Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non‐viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein‐4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A “smart technology” that target the migratory and stem‐like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti‐glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti‐proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient‐derived human GBM, we demonstrate that nanoengineered MSCs are not “donor agnostic” and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39545093</pmid><doi>10.1002/btm2.10675</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4176-3808</orcidid><orcidid>https://orcid.org/0000-0003-4966-672X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-6761 |
ispartof | Bioengineering & translational medicine, 2024-11, Vol.9 (6), p.e10675-n/a |
issn | 2380-6761 2380-6761 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_564e9e2cb426416bac761d550052e0e0 |
source | Publicly Available Content Database; Wiley Open Access; PubMed Central |
subjects | Bioengineering Brain cancer Cancer therapies Cargo Engineering GBM Glioma Influence Medical prognosis MSC nanoengineering Nanoparticles Patients Proteins Regenerative medicine resection Stem cells Success |
title | Therapeutic potential and impact of nanoengineered patient‐derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20potential%20and%20impact%20of%20nanoengineered%20patient%E2%80%90derived%20mesenchymal%20stem%20cells%20in%20a%20murine%20resection%20and%20recurrence%20model%20of%20human%20glioblastoma&rft.jtitle=Bioengineering%20&%20translational%20medicine&rft.au=Al%E2%80%90Kharboosh,%20Rawan&rft.date=2024-11&rft.volume=9&rft.issue=6&rft.spage=e10675&rft.epage=n/a&rft.pages=e10675-n/a&rft.issn=2380-6761&rft.eissn=2380-6761&rft_id=info:doi/10.1002/btm2.10675&rft_dat=%3Cproquest_doaj_%3E3127474987%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4745-72a47758e2745b55b182fd906a022c7cf8c43611f23d92f6a1c8c647d441170c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127474987&rft_id=info:pmid/39545093&rfr_iscdi=true |