Loading…

The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods

This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2023-03, Vol.12 (3), p.248
Main Authors: Marchevsky, Ilia, Sokol, Kseniia, Ryatina, Evgeniya, Izmailova, Yulia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3
cites cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3
container_end_page
container_issue 3
container_start_page 248
container_title Axioms
container_volume 12
creator Marchevsky, Ilia
Sokol, Kseniia
Ryatina, Evgeniya
Izmailova, Yulia
description This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.
doi_str_mv 10.3390/axioms12030248
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743462897</galeid><doaj_id>oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c</doaj_id><sourcerecordid>A743462897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</originalsourceid><addsrcrecordid>eNpVUU1r3DAQNaGBhjTXngU5O9WnJR_DptssbEghm1yNLI0cLba0lbwke-lvr9oNbTNzmOHx5vF4U1WfCb5irMVf9KuPUyYUM0y5OqnOKJaiJo3CH_7bP1YXOW9xqZYwRdhZ9XPzDOjpjt6g-x0E9BD3yQBaRAvIxYQ2L7G-8ROE7GPQI1oFE6ddgpx9PwJajvEFPfhpP-q5EFB_QI_ZhwEt9-N4QGs9JB0GrwN6immGV_Rdp9mbcnkH83O0-VN16vSY4eJtnlePy6-bxW29vv-2Wlyva8MJnWtlWwu2pUJKkD03IIWWXAuqsW1MaxhuhMUCDOZOEdr31AAI6izuW6e4Y-fV6qhro952u-QnnQ5d1L77A8Q0dG_OOtFIrDA2vVCKUyA9KMkdtYrY3rTCFK3Lo9YuxR97yHO3LamVdHJHZUuEJIw1hXV1ZA26iPrg4py0KW1h8iYGcL7g15Iz3lDVyn8HJsWcE7i_Ngnufv-4e_9j9gsRtpr5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791571336</pqid></control><display><type>article</type><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><source>Publicly Available Content (ProQuest)</source><creator>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</creator><creatorcontrib>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</creatorcontrib><description>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms12030248</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Boundary conditions ; Efficiency ; Flow simulation ; Fluid flow ; Fluid-structure interaction ; fluid-structure interaction problem ; Incompressible flow ; Integral equations ; Lagrange vortex method ; Lagrangian method ; Mathematical models ; Methods ; MPI ; OpenMP ; Parallel processing ; Parallel programming ; Particle accelerators ; Particle methods (mathematics) ; Simulation ; Source code ; Two dimensional flow ; Velocity ; Viscous Vortex Domain method ; Vortex-motion ; Vortices</subject><ispartof>Axioms, 2023-03, Vol.12 (3), p.248</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</citedby><cites>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</cites><orcidid>0000-0002-7533-3796 ; 0000-0003-1137-3235 ; 0000-0003-4899-4828 ; 0000-0001-6685-0073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791571336/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791571336?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Marchevsky, Ilia</creatorcontrib><creatorcontrib>Sokol, Kseniia</creatorcontrib><creatorcontrib>Ryatina, Evgeniya</creatorcontrib><creatorcontrib>Izmailova, Yulia</creatorcontrib><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><title>Axioms</title><description>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Efficiency</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>fluid-structure interaction problem</subject><subject>Incompressible flow</subject><subject>Integral equations</subject><subject>Lagrange vortex method</subject><subject>Lagrangian method</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>MPI</subject><subject>OpenMP</subject><subject>Parallel processing</subject><subject>Parallel programming</subject><subject>Particle accelerators</subject><subject>Particle methods (mathematics)</subject><subject>Simulation</subject><subject>Source code</subject><subject>Two dimensional flow</subject><subject>Velocity</subject><subject>Viscous Vortex Domain method</subject><subject>Vortex-motion</subject><subject>Vortices</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1r3DAQNaGBhjTXngU5O9WnJR_DptssbEghm1yNLI0cLba0lbwke-lvr9oNbTNzmOHx5vF4U1WfCb5irMVf9KuPUyYUM0y5OqnOKJaiJo3CH_7bP1YXOW9xqZYwRdhZ9XPzDOjpjt6g-x0E9BD3yQBaRAvIxYQ2L7G-8ROE7GPQI1oFE6ddgpx9PwJajvEFPfhpP-q5EFB_QI_ZhwEt9-N4QGs9JB0GrwN6immGV_Rdp9mbcnkH83O0-VN16vSY4eJtnlePy6-bxW29vv-2Wlyva8MJnWtlWwu2pUJKkD03IIWWXAuqsW1MaxhuhMUCDOZOEdr31AAI6izuW6e4Y-fV6qhro952u-QnnQ5d1L77A8Q0dG_OOtFIrDA2vVCKUyA9KMkdtYrY3rTCFK3Lo9YuxR97yHO3LamVdHJHZUuEJIw1hXV1ZA26iPrg4py0KW1h8iYGcL7g15Iz3lDVyn8HJsWcE7i_Ngnufv-4e_9j9gsRtpr5</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Marchevsky, Ilia</creator><creator>Sokol, Kseniia</creator><creator>Ryatina, Evgeniya</creator><creator>Izmailova, Yulia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7533-3796</orcidid><orcidid>https://orcid.org/0000-0003-1137-3235</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid></search><sort><creationdate>20230301</creationdate><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><author>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Efficiency</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>fluid-structure interaction problem</topic><topic>Incompressible flow</topic><topic>Integral equations</topic><topic>Lagrange vortex method</topic><topic>Lagrangian method</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>MPI</topic><topic>OpenMP</topic><topic>Parallel processing</topic><topic>Parallel programming</topic><topic>Particle accelerators</topic><topic>Particle methods (mathematics)</topic><topic>Simulation</topic><topic>Source code</topic><topic>Two dimensional flow</topic><topic>Velocity</topic><topic>Viscous Vortex Domain method</topic><topic>Vortex-motion</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchevsky, Ilia</creatorcontrib><creatorcontrib>Sokol, Kseniia</creatorcontrib><creatorcontrib>Ryatina, Evgeniya</creatorcontrib><creatorcontrib>Izmailova, Yulia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchevsky, Ilia</au><au>Sokol, Kseniia</au><au>Ryatina, Evgeniya</au><au>Izmailova, Yulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</atitle><jtitle>Axioms</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>248</spage><pages>248-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms12030248</doi><orcidid>https://orcid.org/0000-0002-7533-3796</orcidid><orcidid>https://orcid.org/0000-0003-1137-3235</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2023-03, Vol.12 (3), p.248
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c
source Publicly Available Content (ProQuest)
subjects Algorithms
Boundary conditions
Efficiency
Flow simulation
Fluid flow
Fluid-structure interaction
fluid-structure interaction problem
Incompressible flow
Integral equations
Lagrange vortex method
Lagrangian method
Mathematical models
Methods
MPI
OpenMP
Parallel processing
Parallel programming
Particle accelerators
Particle methods (mathematics)
Simulation
Source code
Two dimensional flow
Velocity
Viscous Vortex Domain method
Vortex-motion
Vortices
title The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20VM2D%20Open%20Source%20Code%20for%20Two-Dimensional%20Incompressible%20Flow%20Simulation%20by%20Using%20Fully%20Lagrangian%20Vortex%20Particle%20Methods&rft.jtitle=Axioms&rft.au=Marchevsky,%20Ilia&rft.date=2023-03-01&rft.volume=12&rft.issue=3&rft.spage=248&rft.pages=248-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms12030248&rft_dat=%3Cgale_doaj_%3EA743462897%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791571336&rft_id=info:pmid/&rft_galeid=A743462897&rfr_iscdi=true