Loading…
The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods
This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is...
Saved in:
Published in: | Axioms 2023-03, Vol.12 (3), p.248 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3 |
container_end_page | |
container_issue | 3 |
container_start_page | 248 |
container_title | Axioms |
container_volume | 12 |
creator | Marchevsky, Ilia Sokol, Kseniia Ryatina, Evgeniya Izmailova, Yulia |
description | This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license. |
doi_str_mv | 10.3390/axioms12030248 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743462897</galeid><doaj_id>oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c</doaj_id><sourcerecordid>A743462897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</originalsourceid><addsrcrecordid>eNpVUU1r3DAQNaGBhjTXngU5O9WnJR_DptssbEghm1yNLI0cLba0lbwke-lvr9oNbTNzmOHx5vF4U1WfCb5irMVf9KuPUyYUM0y5OqnOKJaiJo3CH_7bP1YXOW9xqZYwRdhZ9XPzDOjpjt6g-x0E9BD3yQBaRAvIxYQ2L7G-8ROE7GPQI1oFE6ddgpx9PwJajvEFPfhpP-q5EFB_QI_ZhwEt9-N4QGs9JB0GrwN6immGV_Rdp9mbcnkH83O0-VN16vSY4eJtnlePy6-bxW29vv-2Wlyva8MJnWtlWwu2pUJKkD03IIWWXAuqsW1MaxhuhMUCDOZOEdr31AAI6izuW6e4Y-fV6qhro952u-QnnQ5d1L77A8Q0dG_OOtFIrDA2vVCKUyA9KMkdtYrY3rTCFK3Lo9YuxR97yHO3LamVdHJHZUuEJIw1hXV1ZA26iPrg4py0KW1h8iYGcL7g15Iz3lDVyn8HJsWcE7i_Ngnufv-4e_9j9gsRtpr5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791571336</pqid></control><display><type>article</type><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><source>Publicly Available Content (ProQuest)</source><creator>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</creator><creatorcontrib>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</creatorcontrib><description>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms12030248</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Boundary conditions ; Efficiency ; Flow simulation ; Fluid flow ; Fluid-structure interaction ; fluid-structure interaction problem ; Incompressible flow ; Integral equations ; Lagrange vortex method ; Lagrangian method ; Mathematical models ; Methods ; MPI ; OpenMP ; Parallel processing ; Parallel programming ; Particle accelerators ; Particle methods (mathematics) ; Simulation ; Source code ; Two dimensional flow ; Velocity ; Viscous Vortex Domain method ; Vortex-motion ; Vortices</subject><ispartof>Axioms, 2023-03, Vol.12 (3), p.248</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</citedby><cites>FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</cites><orcidid>0000-0002-7533-3796 ; 0000-0003-1137-3235 ; 0000-0003-4899-4828 ; 0000-0001-6685-0073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791571336/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791571336?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Marchevsky, Ilia</creatorcontrib><creatorcontrib>Sokol, Kseniia</creatorcontrib><creatorcontrib>Ryatina, Evgeniya</creatorcontrib><creatorcontrib>Izmailova, Yulia</creatorcontrib><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><title>Axioms</title><description>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Efficiency</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>fluid-structure interaction problem</subject><subject>Incompressible flow</subject><subject>Integral equations</subject><subject>Lagrange vortex method</subject><subject>Lagrangian method</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>MPI</subject><subject>OpenMP</subject><subject>Parallel processing</subject><subject>Parallel programming</subject><subject>Particle accelerators</subject><subject>Particle methods (mathematics)</subject><subject>Simulation</subject><subject>Source code</subject><subject>Two dimensional flow</subject><subject>Velocity</subject><subject>Viscous Vortex Domain method</subject><subject>Vortex-motion</subject><subject>Vortices</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1r3DAQNaGBhjTXngU5O9WnJR_DptssbEghm1yNLI0cLba0lbwke-lvr9oNbTNzmOHx5vF4U1WfCb5irMVf9KuPUyYUM0y5OqnOKJaiJo3CH_7bP1YXOW9xqZYwRdhZ9XPzDOjpjt6g-x0E9BD3yQBaRAvIxYQ2L7G-8ROE7GPQI1oFE6ddgpx9PwJajvEFPfhpP-q5EFB_QI_ZhwEt9-N4QGs9JB0GrwN6immGV_Rdp9mbcnkH83O0-VN16vSY4eJtnlePy6-bxW29vv-2Wlyva8MJnWtlWwu2pUJKkD03IIWWXAuqsW1MaxhuhMUCDOZOEdr31AAI6izuW6e4Y-fV6qhro952u-QnnQ5d1L77A8Q0dG_OOtFIrDA2vVCKUyA9KMkdtYrY3rTCFK3Lo9YuxR97yHO3LamVdHJHZUuEJIw1hXV1ZA26iPrg4py0KW1h8iYGcL7g15Iz3lDVyn8HJsWcE7i_Ngnufv-4e_9j9gsRtpr5</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Marchevsky, Ilia</creator><creator>Sokol, Kseniia</creator><creator>Ryatina, Evgeniya</creator><creator>Izmailova, Yulia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7533-3796</orcidid><orcidid>https://orcid.org/0000-0003-1137-3235</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid></search><sort><creationdate>20230301</creationdate><title>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</title><author>Marchevsky, Ilia ; Sokol, Kseniia ; Ryatina, Evgeniya ; Izmailova, Yulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Efficiency</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>fluid-structure interaction problem</topic><topic>Incompressible flow</topic><topic>Integral equations</topic><topic>Lagrange vortex method</topic><topic>Lagrangian method</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>MPI</topic><topic>OpenMP</topic><topic>Parallel processing</topic><topic>Parallel programming</topic><topic>Particle accelerators</topic><topic>Particle methods (mathematics)</topic><topic>Simulation</topic><topic>Source code</topic><topic>Two dimensional flow</topic><topic>Velocity</topic><topic>Viscous Vortex Domain method</topic><topic>Vortex-motion</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchevsky, Ilia</creatorcontrib><creatorcontrib>Sokol, Kseniia</creatorcontrib><creatorcontrib>Ryatina, Evgeniya</creatorcontrib><creatorcontrib>Izmailova, Yulia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchevsky, Ilia</au><au>Sokol, Kseniia</au><au>Ryatina, Evgeniya</au><au>Izmailova, Yulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods</atitle><jtitle>Axioms</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>248</spage><pages>248-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>This article describes the open-source C++ code VM2D for the simulation of two-dimensional viscous incompressible flows and solving fluid-structure interaction problems. The code is based on the Viscous Vortex Domains (VVD) method developed by Prof. G. Ya. Dynnikova, where the viscosity influence is taken into account by introducing the diffusive velocity. The original VVD method was supplemented by the author’s algorithms for boundary condition satisfaction, which made it possible to increase the accuracy of flow simulation near the airfoil’s surface line and reduce oscillations when calculating hydrodynamic loads. This paper is aimed primarily at assessing the efficiency of the parallelization of the algorithm. OpenMP, MPI, and Nvidia CUDA parallel programming technologies are used in VM2D, which allow performing simulations on computer systems of various architectures, including those equipped with graphics accelerators. Since the VVD method belongs to the particle methods, the efficiency of parallelization with the usage of graphics accelerators turns out to be quite high. It is shown that in a real simulation, one graphics card can replace about 80 nodes, each of which is equipped with 28 CPU cores. The source code of VM2D is available on GitHub under GNU GPL license.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms12030248</doi><orcidid>https://orcid.org/0000-0002-7533-3796</orcidid><orcidid>https://orcid.org/0000-0003-1137-3235</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2023-03, Vol.12 (3), p.248 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5670800cb58842e1be874f2d81dbc95c |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Boundary conditions Efficiency Flow simulation Fluid flow Fluid-structure interaction fluid-structure interaction problem Incompressible flow Integral equations Lagrange vortex method Lagrangian method Mathematical models Methods MPI OpenMP Parallel processing Parallel programming Particle accelerators Particle methods (mathematics) Simulation Source code Two dimensional flow Velocity Viscous Vortex Domain method Vortex-motion Vortices |
title | The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20VM2D%20Open%20Source%20Code%20for%20Two-Dimensional%20Incompressible%20Flow%20Simulation%20by%20Using%20Fully%20Lagrangian%20Vortex%20Particle%20Methods&rft.jtitle=Axioms&rft.au=Marchevsky,%20Ilia&rft.date=2023-03-01&rft.volume=12&rft.issue=3&rft.spage=248&rft.pages=248-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms12030248&rft_dat=%3Cgale_doaj_%3EA743462897%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8d9ded92577e7b4ce75a74a52a0d6c9c3065d05ec04f812bb2cee52fd0b9f84f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791571336&rft_id=info:pmid/&rft_galeid=A743462897&rfr_iscdi=true |