Loading…

Learning Preferential Perceptual Exposure for HDR Displays

High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping H...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.36800-36809
Main Authors: Bashford-Rogers, Thomas, Melo, Miguel, Marnerides, Demetris, Bessa, Maximino, Debattista, Kurt, Chalmers, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3
cites cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3
container_end_page 36809
container_issue
container_start_page 36800
container_title IEEE access
container_volume 7
creator Bashford-Rogers, Thomas
Melo, Miguel
Marnerides, Demetris
Bessa, Maximino
Debattista, Kurt
Chalmers, Alan
description High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.
doi_str_mv 10.1109/ACCESS.2019.2898910
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8673744</ieee_id><doaj_id>oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17</doaj_id><sourcerecordid>2455609790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOb-gr0UfO5MmqTp-Ta66QYDh9PnkLTX0VHbmnTg_nszO4b3csfHfd8dvyCYUjKjlMDTPMuWu90sJhRmcQopUHITjGKaQMQES27_zffBxLkD8ZV6SchR8LxBbZuq2YdbiyVabPpK1-EWbY5df_Tj8qdr3dFiWLY2XC3ew0Xlulqf3ENwV-ra4eTSx8Hny_IjW0Wbt9d1Nt9EOSdpHxWskIQZyQ0xArQsgBalpAAx1xSlLLlJSgCR5DInCJQaTjiBWDOZoCE5GwfrIbdo9UF1tvrS9qRaXak_obV7pW1f5TUqkfgsI7AABryIDZSG0gKIoMa_QKXPehyyOtt-H9H16tAebePfVzEXIiEggfgtNmzltnXOc7lepUSdmauBuTozVxfm3jUdXBUiXh1pIpnknP0CERh7XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609790</pqid></control><display><type>article</type><title>Learning Preferential Perceptual Exposure for HDR Displays</title><source>IEEE Open Access Journals</source><creator>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</creator><creatorcontrib>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</creatorcontrib><description>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2898910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Brightness ; Computation ; Computational modeling ; Displays ; Dynamic range ; Exposure ; High dynamic range ; Lighting ; machine learning ; Mapping ; Memory management ; perception ; Predictive models</subject><ispartof>IEEE access, 2019, Vol.7, p.36800-36809</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</citedby><cites>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</cites><orcidid>0000-0003-4669-0417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8673744$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bashford-Rogers, Thomas</creatorcontrib><creatorcontrib>Melo, Miguel</creatorcontrib><creatorcontrib>Marnerides, Demetris</creatorcontrib><creatorcontrib>Bessa, Maximino</creatorcontrib><creatorcontrib>Debattista, Kurt</creatorcontrib><creatorcontrib>Chalmers, Alan</creatorcontrib><title>Learning Preferential Perceptual Exposure for HDR Displays</title><title>IEEE access</title><addtitle>Access</addtitle><description>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Brightness</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Displays</subject><subject>Dynamic range</subject><subject>Exposure</subject><subject>High dynamic range</subject><subject>Lighting</subject><subject>machine learning</subject><subject>Mapping</subject><subject>Memory management</subject><subject>perception</subject><subject>Predictive models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxosoOOb-gr0UfO5MmqTp-Ta66QYDh9PnkLTX0VHbmnTg_nszO4b3csfHfd8dvyCYUjKjlMDTPMuWu90sJhRmcQopUHITjGKaQMQES27_zffBxLkD8ZV6SchR8LxBbZuq2YdbiyVabPpK1-EWbY5df_Tj8qdr3dFiWLY2XC3ew0Xlulqf3ENwV-ra4eTSx8Hny_IjW0Wbt9d1Nt9EOSdpHxWskIQZyQ0xArQsgBalpAAx1xSlLLlJSgCR5DInCJQaTjiBWDOZoCE5GwfrIbdo9UF1tvrS9qRaXak_obV7pW1f5TUqkfgsI7AABryIDZSG0gKIoMa_QKXPehyyOtt-H9H16tAebePfVzEXIiEggfgtNmzltnXOc7lepUSdmauBuTozVxfm3jUdXBUiXh1pIpnknP0CERh7XA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bashford-Rogers, Thomas</creator><creator>Melo, Miguel</creator><creator>Marnerides, Demetris</creator><creator>Bessa, Maximino</creator><creator>Debattista, Kurt</creator><creator>Chalmers, Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4669-0417</orcidid></search><sort><creationdate>2019</creationdate><title>Learning Preferential Perceptual Exposure for HDR Displays</title><author>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Brightness</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Displays</topic><topic>Dynamic range</topic><topic>Exposure</topic><topic>High dynamic range</topic><topic>Lighting</topic><topic>machine learning</topic><topic>Mapping</topic><topic>Memory management</topic><topic>perception</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashford-Rogers, Thomas</creatorcontrib><creatorcontrib>Melo, Miguel</creatorcontrib><creatorcontrib>Marnerides, Demetris</creatorcontrib><creatorcontrib>Bessa, Maximino</creatorcontrib><creatorcontrib>Debattista, Kurt</creatorcontrib><creatorcontrib>Chalmers, Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashford-Rogers, Thomas</au><au>Melo, Miguel</au><au>Marnerides, Demetris</au><au>Bessa, Maximino</au><au>Debattista, Kurt</au><au>Chalmers, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Preferential Perceptual Exposure for HDR Displays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>36800</spage><epage>36809</epage><pages>36800-36809</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2898910</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4669-0417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.36800-36809
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17
source IEEE Open Access Journals
subjects Adaptation models
Artificial neural networks
Brightness
Computation
Computational modeling
Displays
Dynamic range
Exposure
High dynamic range
Lighting
machine learning
Mapping
Memory management
perception
Predictive models
title Learning Preferential Perceptual Exposure for HDR Displays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Preferential%20Perceptual%20Exposure%20for%20HDR%20Displays&rft.jtitle=IEEE%20access&rft.au=Bashford-Rogers,%20Thomas&rft.date=2019&rft.volume=7&rft.spage=36800&rft.epage=36809&rft.pages=36800-36809&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2898910&rft_dat=%3Cproquest_doaj_%3E2455609790%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455609790&rft_id=info:pmid/&rft_ieee_id=8673744&rfr_iscdi=true