Loading…
Learning Preferential Perceptual Exposure for HDR Displays
High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping H...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.36800-36809 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3 |
container_end_page | 36809 |
container_issue | |
container_start_page | 36800 |
container_title | IEEE access |
container_volume | 7 |
creator | Bashford-Rogers, Thomas Melo, Miguel Marnerides, Demetris Bessa, Maximino Debattista, Kurt Chalmers, Alan |
description | High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time. |
doi_str_mv | 10.1109/ACCESS.2019.2898910 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8673744</ieee_id><doaj_id>oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17</doaj_id><sourcerecordid>2455609790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOb-gr0UfO5MmqTp-Ta66QYDh9PnkLTX0VHbmnTg_nszO4b3csfHfd8dvyCYUjKjlMDTPMuWu90sJhRmcQopUHITjGKaQMQES27_zffBxLkD8ZV6SchR8LxBbZuq2YdbiyVabPpK1-EWbY5df_Tj8qdr3dFiWLY2XC3ew0Xlulqf3ENwV-ra4eTSx8Hny_IjW0Wbt9d1Nt9EOSdpHxWskIQZyQ0xArQsgBalpAAx1xSlLLlJSgCR5DInCJQaTjiBWDOZoCE5GwfrIbdo9UF1tvrS9qRaXak_obV7pW1f5TUqkfgsI7AABryIDZSG0gKIoMa_QKXPehyyOtt-H9H16tAebePfVzEXIiEggfgtNmzltnXOc7lepUSdmauBuTozVxfm3jUdXBUiXh1pIpnknP0CERh7XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609790</pqid></control><display><type>article</type><title>Learning Preferential Perceptual Exposure for HDR Displays</title><source>IEEE Open Access Journals</source><creator>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</creator><creatorcontrib>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</creatorcontrib><description>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2898910</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Brightness ; Computation ; Computational modeling ; Displays ; Dynamic range ; Exposure ; High dynamic range ; Lighting ; machine learning ; Mapping ; Memory management ; perception ; Predictive models</subject><ispartof>IEEE access, 2019, Vol.7, p.36800-36809</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</citedby><cites>FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</cites><orcidid>0000-0003-4669-0417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8673744$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bashford-Rogers, Thomas</creatorcontrib><creatorcontrib>Melo, Miguel</creatorcontrib><creatorcontrib>Marnerides, Demetris</creatorcontrib><creatorcontrib>Bessa, Maximino</creatorcontrib><creatorcontrib>Debattista, Kurt</creatorcontrib><creatorcontrib>Chalmers, Alan</creatorcontrib><title>Learning Preferential Perceptual Exposure for HDR Displays</title><title>IEEE access</title><addtitle>Access</addtitle><description>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Brightness</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Displays</subject><subject>Dynamic range</subject><subject>Exposure</subject><subject>High dynamic range</subject><subject>Lighting</subject><subject>machine learning</subject><subject>Mapping</subject><subject>Memory management</subject><subject>perception</subject><subject>Predictive models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxosoOOb-gr0UfO5MmqTp-Ta66QYDh9PnkLTX0VHbmnTg_nszO4b3csfHfd8dvyCYUjKjlMDTPMuWu90sJhRmcQopUHITjGKaQMQES27_zffBxLkD8ZV6SchR8LxBbZuq2YdbiyVabPpK1-EWbY5df_Tj8qdr3dFiWLY2XC3ew0Xlulqf3ENwV-ra4eTSx8Hny_IjW0Wbt9d1Nt9EOSdpHxWskIQZyQ0xArQsgBalpAAx1xSlLLlJSgCR5DInCJQaTjiBWDOZoCE5GwfrIbdo9UF1tvrS9qRaXak_obV7pW1f5TUqkfgsI7AABryIDZSG0gKIoMa_QKXPehyyOtt-H9H16tAebePfVzEXIiEggfgtNmzltnXOc7lepUSdmauBuTozVxfm3jUdXBUiXh1pIpnknP0CERh7XA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bashford-Rogers, Thomas</creator><creator>Melo, Miguel</creator><creator>Marnerides, Demetris</creator><creator>Bessa, Maximino</creator><creator>Debattista, Kurt</creator><creator>Chalmers, Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4669-0417</orcidid></search><sort><creationdate>2019</creationdate><title>Learning Preferential Perceptual Exposure for HDR Displays</title><author>Bashford-Rogers, Thomas ; Melo, Miguel ; Marnerides, Demetris ; Bessa, Maximino ; Debattista, Kurt ; Chalmers, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Brightness</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Displays</topic><topic>Dynamic range</topic><topic>Exposure</topic><topic>High dynamic range</topic><topic>Lighting</topic><topic>machine learning</topic><topic>Mapping</topic><topic>Memory management</topic><topic>perception</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashford-Rogers, Thomas</creatorcontrib><creatorcontrib>Melo, Miguel</creatorcontrib><creatorcontrib>Marnerides, Demetris</creatorcontrib><creatorcontrib>Bessa, Maximino</creatorcontrib><creatorcontrib>Debattista, Kurt</creatorcontrib><creatorcontrib>Chalmers, Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashford-Rogers, Thomas</au><au>Melo, Miguel</au><au>Marnerides, Demetris</au><au>Bessa, Maximino</au><au>Debattista, Kurt</au><au>Chalmers, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Preferential Perceptual Exposure for HDR Displays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>36800</spage><epage>36809</epage><pages>36800-36809</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2898910</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4669-0417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.36800-36809 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_56b6fb5ed9394d2b9fb11d9051b03b17 |
source | IEEE Open Access Journals |
subjects | Adaptation models Artificial neural networks Brightness Computation Computational modeling Displays Dynamic range Exposure High dynamic range Lighting machine learning Mapping Memory management perception Predictive models |
title | Learning Preferential Perceptual Exposure for HDR Displays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Preferential%20Perceptual%20Exposure%20for%20HDR%20Displays&rft.jtitle=IEEE%20access&rft.au=Bashford-Rogers,%20Thomas&rft.date=2019&rft.volume=7&rft.spage=36800&rft.epage=36809&rft.pages=36800-36809&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2898910&rft_dat=%3Cproquest_doaj_%3E2455609790%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d3d703b74b0b59a7d91df719924a1e77f4b6f9956c7c0e911b404092a376eb0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455609790&rft_id=info:pmid/&rft_ieee_id=8673744&rfr_iscdi=true |