Loading…
Influence of Thermophoretic Particle Deposition on the 3D Flow of Sodium Alginate-Based Casson Nanofluid over a Stretching Sheet
The wide range of industrial applications of flow across moving or static solid surfaces has aroused the curiosity of researchers. In order to generate a more exact estimate of flow and heat transfer properties, three-dimensional modelling must be addressed. This plays a vital role in metalworking o...
Saved in:
Published in: | Micromachines (Basel) 2021-11, Vol.12 (12), p.1474 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The wide range of industrial applications of flow across moving or static solid surfaces has aroused the curiosity of researchers. In order to generate a more exact estimate of flow and heat transfer properties, three-dimensional modelling must be addressed. This plays a vital role in metalworking operations, producing plastic and rubber films, and the continuous cooling of fibre. In view of the above scope, an incompressible, laminar three-dimensional flow of a Casson nanoliquid in the occurrence of thermophoretic particle deposition over a non-linearly extending sheet is examined. To convert the collection of partial differential equations into ordinary differential equations, the governing equations are framed with sufficient assumptions, and appropriate similarity transformations are employed. The reduced equations are solved by implementing Runge Kutta Fehlberg 4th 5th order technique with the aid of a shooting scheme. The numerical results are obtained for linear and non-linear cases, and graphs are drawn for various dimensionless constraints. The present study shows that improvement in the Casson parameter values will diminish the axial velocities, but improvement is seen in thermal distribution. The escalation in the thermophoretic parameter will decline the concentration profiles. The rate of mass transfer, surface drag force will reduce with the improved values of the power law index. The non-linear stretching case shows greater impact in all of the profiles compared to the linear stretching case. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi12121474 |