Loading…

Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures

Natural systems display sophisticated control of light-matter interactions at multiple length scales for light harvesting, manipulation, and management, through elaborate photonic architectures and responsive material formats. Here, we combine programmable photonic function with elastomeric material...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-03, Vol.12 (1), p.1651-9, Article 1651
Main Authors: Wang, Yu, Li, Meng, Chang, Jan-Kai, Aurelio, Daniele, Li, Wenyi, Kim, Beom Joon, Kim, Jae Hwan, Liscidini, Marco, Rogers, John A., Omenetto, Fiorenzo G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33
cites cdi_FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33
container_end_page 9
container_issue 1
container_start_page 1651
container_title Nature communications
container_volume 12
creator Wang, Yu
Li, Meng
Chang, Jan-Kai
Aurelio, Daniele
Li, Wenyi
Kim, Beom Joon
Kim, Jae Hwan
Liscidini, Marco
Rogers, John A.
Omenetto, Fiorenzo G.
description Natural systems display sophisticated control of light-matter interactions at multiple length scales for light harvesting, manipulation, and management, through elaborate photonic architectures and responsive material formats. Here, we combine programmable photonic function with elastomeric material composites to generate optomechanical actuators that display controllable and tunable actuation as well as complex deformation in response to simple light illumination. The ability to topographically control photonic bandgaps allows programmable actuation of the elastomeric substrate in response to illumination. Complex three-dimensional configurations, programmable motion patterns, and phototropic movement where the material moves in response to the motion of a light source are presented. A “photonic sunflower” demonstrator device consisting of a light-tracking solar cell is also illustrated to demonstrate the utility of the material composite. The strategy presented here provides new opportunities for the future development of intelligent optomechanical systems that move with light on demand. Programmable optical actuation in a material provides special possibilities for applications. Here, the authors combine photonic crystals with elastomers to provide material composites with tunable deformation and actuation as a function of moving light.
doi_str_mv 10.1038/s41467-021-21764-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_56b8ba13ba4447acbd3e7aff65e9cf33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_56b8ba13ba4447acbd3e7aff65e9cf33</doaj_id><sourcerecordid>2500687032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInEO-CvO5oKEKqCVVuICZ2tsjxMvSRzspKj_Hu-mLe0FX2zPvPOMx29RvKXkAyV89zEJKmRTEUYrRhspKvmiOGdE0Io2jL98cj4rLlM6kLx4S3dCvC7OOG8ok6Q5L_7sfdcvFZjF38KCtkw9zFiOIc69n7oSJlsOJ8kSwfw6hsasix6GVK7peNc-zGG4GzFWGlJGzDF0EcYR9IDl3IclTN6UE0whLXE1yxoxvSleuYzAy_v9ovj59cuPq-tq__3bzdXnfWVqQZaKsh1l0KJEA9ZR0ejWSOuc5kxrrmWeArUwratF61rQ1olaArWuRrSInF8UNxvXBjioOfoR4p0K4NUpEGKnIC7eDKhqqXcaKNcghGjAaMuxAedkja1x_Mj6tLHmVY9oDU75T4Zn0OeZyfeqC7eqaeuacJEB7-8BMfxeMS3qENY45fkVqwmRu4ZwllVsU5kYUoroHjtQoo7eq817lb1XJ--VzEXvnr7tseTB6SzgmyDl1NRh_Nf7P9i_kxK_yg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500687032</pqid></control><display><type>article</type><title>Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Yu ; Li, Meng ; Chang, Jan-Kai ; Aurelio, Daniele ; Li, Wenyi ; Kim, Beom Joon ; Kim, Jae Hwan ; Liscidini, Marco ; Rogers, John A. ; Omenetto, Fiorenzo G.</creator><creatorcontrib>Wang, Yu ; Li, Meng ; Chang, Jan-Kai ; Aurelio, Daniele ; Li, Wenyi ; Kim, Beom Joon ; Kim, Jae Hwan ; Liscidini, Marco ; Rogers, John A. ; Omenetto, Fiorenzo G.</creatorcontrib><description>Natural systems display sophisticated control of light-matter interactions at multiple length scales for light harvesting, manipulation, and management, through elaborate photonic architectures and responsive material formats. Here, we combine programmable photonic function with elastomeric material composites to generate optomechanical actuators that display controllable and tunable actuation as well as complex deformation in response to simple light illumination. The ability to topographically control photonic bandgaps allows programmable actuation of the elastomeric substrate in response to illumination. Complex three-dimensional configurations, programmable motion patterns, and phototropic movement where the material moves in response to the motion of a light source are presented. A “photonic sunflower” demonstrator device consisting of a light-tracking solar cell is also illustrated to demonstrate the utility of the material composite. The strategy presented here provides new opportunities for the future development of intelligent optomechanical systems that move with light on demand. Programmable optical actuation in a material provides special possibilities for applications. Here, the authors combine photonic crystals with elastomers to provide material composites with tunable deformation and actuation as a function of moving light.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-21764-6</identifier><identifier>PMID: 33712607</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/1022 ; 639/301/54/989 ; Actuation ; Actuators ; Biopolymers ; Composite materials ; Crystals ; Deformation ; Elastomers ; Humanities and Social Sciences ; Illumination ; Light ; Light sources ; Morphing ; multidisciplinary ; Photonic band gaps ; Photonic crystals ; Photovoltaic cells ; Science ; Science (multidisciplinary) ; Solar cells ; Stability ; Substrates ; Sunflowers ; Three dimensional motion ; Tracking</subject><ispartof>Nature communications, 2021-03, Vol.12 (1), p.1651-9, Article 1651</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33</citedby><cites>FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33</cites><orcidid>0000-0002-2980-3961 ; 0000-0003-0249-4414 ; 0000-0002-1154-6311 ; 0000-0002-6014-2866 ; 0000-0002-0327-853X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2500687032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2500687032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33712607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Chang, Jan-Kai</creatorcontrib><creatorcontrib>Aurelio, Daniele</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Kim, Beom Joon</creatorcontrib><creatorcontrib>Kim, Jae Hwan</creatorcontrib><creatorcontrib>Liscidini, Marco</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><title>Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Natural systems display sophisticated control of light-matter interactions at multiple length scales for light harvesting, manipulation, and management, through elaborate photonic architectures and responsive material formats. Here, we combine programmable photonic function with elastomeric material composites to generate optomechanical actuators that display controllable and tunable actuation as well as complex deformation in response to simple light illumination. The ability to topographically control photonic bandgaps allows programmable actuation of the elastomeric substrate in response to illumination. Complex three-dimensional configurations, programmable motion patterns, and phototropic movement where the material moves in response to the motion of a light source are presented. A “photonic sunflower” demonstrator device consisting of a light-tracking solar cell is also illustrated to demonstrate the utility of the material composite. The strategy presented here provides new opportunities for the future development of intelligent optomechanical systems that move with light on demand. Programmable optical actuation in a material provides special possibilities for applications. Here, the authors combine photonic crystals with elastomers to provide material composites with tunable deformation and actuation as a function of moving light.</description><subject>639/301/1019/1022</subject><subject>639/301/54/989</subject><subject>Actuation</subject><subject>Actuators</subject><subject>Biopolymers</subject><subject>Composite materials</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Elastomers</subject><subject>Humanities and Social Sciences</subject><subject>Illumination</subject><subject>Light</subject><subject>Light sources</subject><subject>Morphing</subject><subject>multidisciplinary</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Photovoltaic cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Substrates</subject><subject>Sunflowers</subject><subject>Three dimensional motion</subject><subject>Tracking</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInEO-CvO5oKEKqCVVuICZ2tsjxMvSRzspKj_Hu-mLe0FX2zPvPOMx29RvKXkAyV89zEJKmRTEUYrRhspKvmiOGdE0Io2jL98cj4rLlM6kLx4S3dCvC7OOG8ok6Q5L_7sfdcvFZjF38KCtkw9zFiOIc69n7oSJlsOJ8kSwfw6hsasix6GVK7peNc-zGG4GzFWGlJGzDF0EcYR9IDl3IclTN6UE0whLXE1yxoxvSleuYzAy_v9ovj59cuPq-tq__3bzdXnfWVqQZaKsh1l0KJEA9ZR0ejWSOuc5kxrrmWeArUwratF61rQ1olaArWuRrSInF8UNxvXBjioOfoR4p0K4NUpEGKnIC7eDKhqqXcaKNcghGjAaMuxAedkja1x_Mj6tLHmVY9oDU75T4Zn0OeZyfeqC7eqaeuacJEB7-8BMfxeMS3qENY45fkVqwmRu4ZwllVsU5kYUoroHjtQoo7eq817lb1XJ--VzEXvnr7tseTB6SzgmyDl1NRh_Nf7P9i_kxK_yg</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>Wang, Yu</creator><creator>Li, Meng</creator><creator>Chang, Jan-Kai</creator><creator>Aurelio, Daniele</creator><creator>Li, Wenyi</creator><creator>Kim, Beom Joon</creator><creator>Kim, Jae Hwan</creator><creator>Liscidini, Marco</creator><creator>Rogers, John A.</creator><creator>Omenetto, Fiorenzo G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2980-3961</orcidid><orcidid>https://orcid.org/0000-0003-0249-4414</orcidid><orcidid>https://orcid.org/0000-0002-1154-6311</orcidid><orcidid>https://orcid.org/0000-0002-6014-2866</orcidid><orcidid>https://orcid.org/0000-0002-0327-853X</orcidid></search><sort><creationdate>20210312</creationdate><title>Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures</title><author>Wang, Yu ; Li, Meng ; Chang, Jan-Kai ; Aurelio, Daniele ; Li, Wenyi ; Kim, Beom Joon ; Kim, Jae Hwan ; Liscidini, Marco ; Rogers, John A. ; Omenetto, Fiorenzo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1019/1022</topic><topic>639/301/54/989</topic><topic>Actuation</topic><topic>Actuators</topic><topic>Biopolymers</topic><topic>Composite materials</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Elastomers</topic><topic>Humanities and Social Sciences</topic><topic>Illumination</topic><topic>Light</topic><topic>Light sources</topic><topic>Morphing</topic><topic>multidisciplinary</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Photovoltaic cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Substrates</topic><topic>Sunflowers</topic><topic>Three dimensional motion</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Chang, Jan-Kai</creatorcontrib><creatorcontrib>Aurelio, Daniele</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Kim, Beom Joon</creatorcontrib><creatorcontrib>Kim, Jae Hwan</creatorcontrib><creatorcontrib>Liscidini, Marco</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Li, Meng</au><au>Chang, Jan-Kai</au><au>Aurelio, Daniele</au><au>Li, Wenyi</au><au>Kim, Beom Joon</au><au>Kim, Jae Hwan</au><au>Liscidini, Marco</au><au>Rogers, John A.</au><au>Omenetto, Fiorenzo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-03-12</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>1651</spage><epage>9</epage><pages>1651-9</pages><artnum>1651</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Natural systems display sophisticated control of light-matter interactions at multiple length scales for light harvesting, manipulation, and management, through elaborate photonic architectures and responsive material formats. Here, we combine programmable photonic function with elastomeric material composites to generate optomechanical actuators that display controllable and tunable actuation as well as complex deformation in response to simple light illumination. The ability to topographically control photonic bandgaps allows programmable actuation of the elastomeric substrate in response to illumination. Complex three-dimensional configurations, programmable motion patterns, and phototropic movement where the material moves in response to the motion of a light source are presented. A “photonic sunflower” demonstrator device consisting of a light-tracking solar cell is also illustrated to demonstrate the utility of the material composite. The strategy presented here provides new opportunities for the future development of intelligent optomechanical systems that move with light on demand. Programmable optical actuation in a material provides special possibilities for applications. Here, the authors combine photonic crystals with elastomers to provide material composites with tunable deformation and actuation as a function of moving light.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33712607</pmid><doi>10.1038/s41467-021-21764-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2980-3961</orcidid><orcidid>https://orcid.org/0000-0003-0249-4414</orcidid><orcidid>https://orcid.org/0000-0002-1154-6311</orcidid><orcidid>https://orcid.org/0000-0002-6014-2866</orcidid><orcidid>https://orcid.org/0000-0002-0327-853X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-03, Vol.12 (1), p.1651-9, Article 1651
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_56b8ba13ba4447acbd3e7aff65e9cf33
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1019/1022
639/301/54/989
Actuation
Actuators
Biopolymers
Composite materials
Crystals
Deformation
Elastomers
Humanities and Social Sciences
Illumination
Light
Light sources
Morphing
multidisciplinary
Photonic band gaps
Photonic crystals
Photovoltaic cells
Science
Science (multidisciplinary)
Solar cells
Stability
Substrates
Sunflowers
Three dimensional motion
Tracking
title Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-activated%20shape%20morphing%20and%20light-tracking%20materials%20using%20biopolymer-based%20programmable%20photonic%20nanostructures&rft.jtitle=Nature%20communications&rft.au=Wang,%20Yu&rft.date=2021-03-12&rft.volume=12&rft.issue=1&rft.spage=1651&rft.epage=9&rft.pages=1651-9&rft.artnum=1651&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-21764-6&rft_dat=%3Cproquest_doaj_%3E2500687032%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-12812a9e6ecadf147b9c6dffb32bb3b6126eb4c9f549f9abdf456a1df5eedee33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2500687032&rft_id=info:pmid/33712607&rfr_iscdi=true